Global existence for the wave equation with nonlinear boundary damping and source terms

Abstract The paper deals with local and global existence for the solutions of the wave equation in bounded domains with nonlinear boundary damping and source terms. The typical problem studied is u tt − Δ u=0 in (0,∞)×Ω, u=0 on [0,∞)×Γ 0 , ∂u ∂ν =−|u t | m−2 u t +|u| p−2 u on [0,∞)×Γ 1 , u(0,x)=u 0 (x), u t (0,x)=u 1 (x) on Ω, where Ω⊂ R n (n⩾1) is a regular and bounded domain, ∂Ω=Γ 0 ∪Γ 1 , m >1, 2⩽ p r , where r =2( n −1)/( n −2) when n ⩾3, r =∞ when n =1,2, and the initial data are in the energy space. We prove local existence of the solutions in the energy space when m > r /( r +1− p ) or n =1,2, and global existence when p ⩽ m or the initial data are inside the potential well associated to the stationary problem.

[1]  W. Ziemer Weakly differentiable functions , 1989 .

[2]  Goong Chen,et al.  A Note on the Boundary Stabilization of the Wave Equation , 1981 .

[3]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[4]  Lawrence E. Payne,et al.  Nonexistence theorems for the heat equation with nonlinear boundary conditions and for the porous medium equation backward in time , 1974 .

[5]  E. Coddington,et al.  Theory of Ordinary Differential Equations , 1955 .

[6]  Goong Chen,et al.  Control and Stabilization for the Wave Equation in a Bounded Domain, Part II , 1979 .

[7]  Howard A. Levine,et al.  A potential well theory for the wave equation with a nonlinear boundary condition. , 1987 .

[8]  Jacques-Louis Lions,et al.  Some non-linear evolution equations , 1965 .

[9]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[10]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[11]  R. E. Edwards,et al.  Functional Analysis: Theory and Applications , 1965 .

[12]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[13]  Enzo Vitillaro Some new results on global nonexistence and blow-up for evolution problems with positive initial energy , 2000 .

[14]  J. Lagnese,et al.  Note on boundary stabilization of wave equations , 1988 .

[15]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[16]  Howard A. Levine,et al.  Global Nonexistence Theorems for Quasilinear Evolution Equations with Dissipation , 1997 .

[17]  M Peyrot,et al.  Causal analysis: theory and application. , 1996, Journal of pediatric psychology.

[18]  Enzo Vitillaro,et al.  A potential well theory for the wave equation with nonlinear source and boundary damping terms , 2002, Glasgow Mathematical Journal.

[19]  Irena Lasiecka,et al.  Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping , 1993, Differential and Integral Equations.

[20]  E. Zuazua,et al.  Uniform stabilization of the wave equation by nonlinear boundary feedback , 1990 .

[21]  J. Lagnese Decay of solutions of wave equations in a bounded region with boundary dissipation , 1983 .

[22]  E. Zuazua,et al.  A direct method for boundary stabilization of the wave equation , 1990 .

[23]  Walter A. Strauss,et al.  On continuity of functions with values in various Banach spaces , 1966 .

[24]  I. Segal Non-Linear Semi-Groups , 1963 .

[25]  J. Serrin,et al.  Global Nonexistence for Abstract Evolution Equations with Positive Initial Energy , 1998 .

[26]  Vladimir Georgiev,et al.  Existence of a Solution of the Wave Equation with Nonlinear Damping and Source Terms , 1994 .