Design Micro-piezoelectric Actuated Gripper for Medical Applications

Designing micro electro-mechanical systems based gripper is challenging task specially with introducing accurate and tactile gripping. Tactile gripping is important with biological and medical application. In this work, single structure mechanism of piezoelectric materials is designed using topology optimization to be a micro gripper. Topology optimization is done in MATLAB programming environment. Model is tested in COMSOL. The models showed good opening and closing action actuated by applying electric potential.

[1]  Oystein Fischer,et al.  A vertical piezoelectric inertial slider , 1990 .

[2]  Noboru Kikuchi,et al.  TOPOLOGY OPTIMIZATION OF COMPLIANT MECHANISMS USING THE HOMOGENIZATION METHOD , 1998 .

[3]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[4]  D. C. Drucker,et al.  Design for Minimum Weight. , 1956 .

[5]  K. König,et al.  Photochemotherapy of animal tumors with the photosensitizer Methylene Blue using a krypton laser , 2004, Journal of Cancer Research and Clinical Oncology.

[6]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[7]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[8]  N. Olhoff,et al.  An investigation concerning optimal design of solid elastic plates , 1981 .

[9]  P. Avouris Manipulation of Matter at the Atomic and Molecular Levels , 1995 .

[10]  Manfred H. Jericho,et al.  A vertical/horizontal two‐dimensional piezoelectric driven inertial slider micropositioner for cryogenic applications , 1992 .

[11]  G. Rozvany,et al.  Extensions of the Prager-Shield theory of optimal plastic design , 1972 .

[12]  A. Kühnle,et al.  Understanding atom movement during lateral manipulation with the STM tip using a simple simulation method , 2002 .

[13]  Bradley J. Nelson,et al.  Calibration of multi-axis MEMS force sensors using the shape from motion method , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[14]  E. H. Al-Taee,et al.  Photodynamic Therapy for Leiomyosarcoma: In vitro study , 2012 .

[15]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[16]  Bergander,et al.  Micropositioners for microscopy applications and microbiology based on piezoelectric actuators , 2002 .

[17]  A.S.L. Chan,et al.  The Design of Michell Optimum Structures , 1960 .

[18]  Ioannis K. Kaliakatsos,et al.  Microrobots for minimally invasive medicine. , 2010, Annual review of biomedical engineering.

[19]  W. Prager,et al.  Optimal design of partially discretized grillages , 1976 .

[20]  Dayane Batista Tada,et al.  Methylene blue in photodynamic therapy: From basic mechanisms to clinical applications. , 2005, Photodiagnosis and photodynamic therapy.

[21]  J. E. Taylor,et al.  A Finite Element Method for the Optimal Design of Variable Thickness Sheets , 1973 .

[22]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[23]  Benedetto Allotta,et al.  Robotics for medical applications , 1996, IEEE Robotics Autom. Mag..

[24]  C. Heiden,et al.  Simple micropositioning devices for STM , 1987 .