Eulerian Finite Element Methods for Parabolic Equations on Moving Surfaces

Three new Eulerian finite element methods for parabolic PDEs on a moving surface $\Gamma(t)$ are presented and compared in numerical experiments. These are space-time Galerkin methods, which are derived from a weak formulation in space and time. The trial- and test-spaces contain the traces on the space-time manifold of an outer prismatic finite element space. The numerical experiments show that two of the methods converge with second order with respect to both the time step size and the spatial mesh width.

[1]  Charles M. Elliott,et al.  Finite elements on evolving surfaces , 2007 .

[2]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[3]  Gerhard Dziuk,et al.  Runge–Kutta time discretization of parabolic differential equations on evolving surfaces , 2012 .

[4]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[5]  Charles M. Elliott,et al.  L2-estimates for the evolving surface finite element method , 2012, Math. Comput..

[6]  Charles M. Elliott,et al.  An Eulerian approach to transport and diffusion on evolving implicit surfaces , 2009, Comput. Vis. Sci..

[7]  Metin Muradoglu,et al.  A front-tracking method for computation of interfacial flows with soluble surfactants , 2008, J. Comput. Phys..

[8]  Hongkai Zhao,et al.  An Eulerian Formulation for Solving Partial Differential Equations Along a Moving Interface , 2003, J. Sci. Comput..

[9]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[10]  C. Pozrikidis,et al.  A finite-element method for interfacial surfactant transport, with application to the flow-induced deformation of a viscous drop , 2004 .

[11]  J. Lowengrub,et al.  A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant , 2004 .

[12]  Zhilin Li,et al.  A level-set method for interfacial flows with surfactant , 2006, J. Comput. Phys..

[13]  Maxim A. Olshanskii,et al.  An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..

[14]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[15]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[16]  H. Stone A simple derivation of the time‐dependent convective‐diffusion equation for surfactant transport along a deforming interface , 1990 .

[17]  Martin Rumpf,et al.  A Convergent Finite Volume Scheme for Diffusion on Evolving Surfaces , 2011, SIAM J. Numer. Anal..

[18]  Maxim A. Olshanskii,et al.  A Finite Element Method for Elliptic Equations on Surfaces , 2009, SIAM J. Numer. Anal..

[19]  A. Reusken,et al.  The DROPS package for numerical simulations of incompressible flows using parallel adaptive multigrid techniques , 2022 .