Structural and Algorithmic Aspects of Chordal Graph Embeddings

In this thesis, we consider graph embeddings into the class o f chordal graphs (so-calledtriangulations), by which, for greater classes of graphs, we obtain new structural results and efficient algorithms for computing v arious graph parameters. The minimal separators in a graph play an important role for g raph triangulations. For this reason, we study different approaches to m odel the underlying structure that links the minimal separators in arbitrary gr aphs. In this context, we introduce theseparator graphand thestructure graphof graphs. One of our main results states that there is a 1-1 correspondence between th inclusion-minimal triangulations of a graph and the maximal cliques of its separat or graph. Because of that, we can reduce some graph problems to weighted clique pr oblems in the corresponding separator graph. This enables us to solve the treew idth and the minimum fill-in problem on a generalization of both the interval and t he permutation graphs, namely thed-trapezoid graphs. The structure graph models the lattice s ructure of minimal separators, which is well-known for fixed pairs of ve rtices. This approach leads to new characterizations and a polynomial time algori thm for computing the treewidth of graphs without asteroidal triples. Subsequen tly, we study the bandwidth and the ranking problem on subclasses of graphs withou t asteroidal triples. Eventually, for a generalization of the tolerance graphs, w e show the relation of the treewidth and pathwidth and solve the minimum fill-in proble m.

[1]  G. Dirac On rigid circuit graphs , 1961 .

[2]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[3]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[4]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[5]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[6]  D. Rose Triangulated graphs and the elimination process , 1970 .

[7]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[8]  F. Escalante Schnittverbände in Graphen , 1972 .

[9]  Alfred V. Aho,et al.  The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..

[10]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[11]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[12]  Donald J. ROSE,et al.  On simple characterizations of k-trees , 1974, Discret. Math..

[13]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[14]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .

[15]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[16]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[17]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[18]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[19]  Norman E. Gibbs,et al.  The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.

[20]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[21]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[22]  Clyde L. Monma,et al.  Tolerance graphs , 1984, Discret. Appl. Math..

[23]  Stefan Arnborg,et al.  Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.

[24]  P. Seymour,et al.  Surveys in combinatorics 1985: Graph minors – a survey , 1985 .

[25]  R. Möhring Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .

[26]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[27]  B. Monien The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .

[28]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[29]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[30]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[31]  Jeremy P. Spinrad,et al.  Bipartite permutation graphs , 1987, Discret. Appl. Math..

[32]  Ron Y. Pinter,et al.  Trapezoid graphs and their coloring , 1988, Discret. Appl. Math..

[33]  H. D. Ratliff,et al.  Optimal Node Ranking of Trees , 1988, Inf. Process. Lett..

[34]  Daniel Bienstock,et al.  Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.

[35]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[36]  Rolf H. Möhring,et al.  The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..

[37]  Rolf H. Möhring,et al.  Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .

[38]  An O (n 2 ) time algorithm for the 2-chain cover problem and related problems , 1991, SODA 1991.

[39]  Rolf H. Möhring,et al.  Interval dimension is a comparability invariant , 1991, Discret. Math..

[40]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[41]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[42]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[43]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[44]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.

[45]  Alejandro A. Schäffer,et al.  Optimal edge ranking of trees in polynomial time , 1993, SODA '93.

[46]  Jeremy P. Spinrad,et al.  Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .

[47]  Thomas Andreae,et al.  On a Problem Concerning Tolerance Graphs , 1993, Discret. Appl. Math..

[48]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[49]  Stephan Olariu,et al.  Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..

[50]  Dieter Kratsch,et al.  Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.

[51]  Dieter Kratsch,et al.  The ESA '93 Proceedings , 1994 .

[52]  M. Golumbic,et al.  On the Complexity of DNA Physical Mapping , 1994 .

[53]  Dieter Kratsch,et al.  Finding All Minimal Separators of a Graph , 1994, STACS.

[54]  Stefan Felsner,et al.  Trapezoid Graphs and Generalizations, Geometry and Algorithms , 1994, Discret. Appl. Math..

[55]  A. Parra,et al.  Eine klasse von graphen, in der Jeder toleranzgraph ein beschrankter toleranzgraph ist , 1994 .

[56]  C. Pandu Rangan,et al.  Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..

[57]  Stefan Felsner,et al.  On the Interplay Between Interval Dimension and Dimension , 1994, SIAM J. Discret. Math..

[58]  Renate Garbe Tree-width and Path-width of Comparability Graphs of interval Orders , 1994, WG.

[59]  Kenneth P. Bogart,et al.  Bipartite tolerance orders , 1994, Discret. Math..

[60]  Haim Kaplan,et al.  Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[61]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[62]  M. Habib,et al.  Treewidth of cocomparability graphs and a new order-theoretic parameter , 1994 .

[63]  Andreas Parra,et al.  How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.

[64]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[65]  Dieter Kratsch,et al.  Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1995, J. Algorithms.

[66]  Petra Scheffler,et al.  Fachbereich 3 Mathematik Treewidth Equals Bandwidth for At-free Claw-free Graphs Treewidth Equals Bandwidth for At-free Claw-free Graphs , 1995 .

[67]  Peter C. Fishburn,et al.  Proper and Unit Tolerance Graphs , 1995, Discret. Appl. Math..

[68]  Dieter Kratsch,et al.  Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..

[69]  Ton Kloks Treewidth of Circle Graphs , 1996, Int. J. Found. Comput. Sci..

[70]  Rolf H. Möhring,et al.  Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..

[71]  Jan van Leeuwen,et al.  On Interval Routing Schemes and Treewidth , 1995, Inf. Comput..

[72]  Zdenek Ryjácek,et al.  Claw-free graphs - A survey , 1997, Discret. Math..

[73]  Andreas Parra,et al.  Triangulating Multitolerance Graphs , 1998, Discret. Appl. Math..

[74]  Klaus Jansen,et al.  Rankings of Graphs , 1998, SIAM J. Discret. Math..

[75]  Stefan Felsner Tolerance graphs, and orders , 1998 .