Structural and Algorithmic Aspects of Chordal Graph Embeddings
暂无分享,去创建一个
[1] G. Dirac. On rigid circuit graphs , 1961 .
[2] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .
[3] P. Gilmore,et al. A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.
[4] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[5] T. Gallai. Transitiv orientierbare Graphen , 1967 .
[6] D. Rose. Triangulated graphs and the elimination process , 1970 .
[7] Richard M. Karp,et al. A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.
[8] F. Escalante. Schnittverbände in Graphen , 1972 .
[9] Alfred V. Aho,et al. The Transitive Reduction of a Directed Graph , 1972, SIAM J. Comput..
[10] F. Gavril. The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .
[11] Peter Buneman,et al. A characterisation of rigid circuit graphs , 1974, Discret. Math..
[12] Donald J. ROSE,et al. On simple characterizations of k-trees , 1974, Discret. Math..
[13] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[14] David S. Johnson,et al. COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .
[15] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[16] Charles E. Leiserson,et al. Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.
[17] M. Golumbic. Algorithmic graph theory and perfect graphs , 1980 .
[18] M. Yannakakis. Computing the Minimum Fill-in is NP^Complete , 1981 .
[19] Norman E. Gibbs,et al. The bandwidth problem for graphs and matrices - a survey , 1982, J. Graph Theory.
[20] Paul D. Seymour,et al. Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.
[21] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[22] Clyde L. Monma,et al. Tolerance graphs , 1984, Discret. Appl. Math..
[23] Stefan Arnborg,et al. Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey , 1985, BIT.
[24] P. Seymour,et al. Surveys in combinatorics 1985: Graph minors – a survey , 1985 .
[25] R. Möhring. Algorithmic Aspects of Comparability Graphs and Interval Graphs , 1985 .
[26] Paul D. Seymour,et al. Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.
[27] B. Monien. The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete , 1986 .
[28] Paul D. Seymour,et al. Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.
[29] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[30] Derek G. Corneil,et al. Complexity of finding embeddings in a k -tree , 1987 .
[31] Jeremy P. Spinrad,et al. Bipartite permutation graphs , 1987, Discret. Appl. Math..
[32] Ron Y. Pinter,et al. Trapezoid graphs and their coloring , 1988, Discret. Appl. Math..
[33] H. D. Ratliff,et al. Optimal Node Ranking of Trees , 1988, Inf. Process. Lett..
[34] Daniel Bienstock,et al. Graph Searching, Path-Width, Tree-Width and Related Problems (A Survey) , 1989, Reliability Of Computer And Communication Networks.
[35] Stefan Arnborg,et al. Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..
[36] Rolf H. Möhring,et al. The Pathwidth and Treewidth of Cographs , 1990, SIAM J. Discret. Math..
[37] Rolf H. Möhring,et al. Graph Problems Related to Gate Matrix Layout and PLA Folding , 1990 .
[38] An O (n 2 ) time algorithm for the 2-chain cover problem and related problems , 1991, SODA 1991.
[39] Rolf H. Möhring,et al. Interval dimension is a comparability invariant , 1991, Discret. Math..
[40] Detlef Seese,et al. Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.
[41] John R. Gilbert,et al. Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.
[42] W. Trotter,et al. Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .
[43] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.
[44] Dieter Kratsch,et al. Treewidth and Pathwidth of Permutation Graphs , 1993, ICALP.
[45] Alejandro A. Schäffer,et al. Optimal edge ranking of trees in polynomial time , 1993, SODA '93.
[46] Jeremy P. Spinrad,et al. Treewidth and pathwidth of cocomparability graphs of bounded dimension , 1993 .
[47] Thomas Andreae,et al. On a Problem Concerning Tolerance Graphs , 1993, Discret. Appl. Math..
[48] Hans L. Bodlaender,et al. A Tourist Guide through Treewidth , 1993, Acta Cybern..
[49] Stephan Olariu,et al. Asteroidal Triple-Free Graphs , 1993, SIAM J. Discret. Math..
[50] Dieter Kratsch,et al. Computing Treewidth and Minimum Fill-In: All You Need are the Minimal Separators , 1993, ESA.
[51] Dieter Kratsch,et al. The ESA '93 Proceedings , 1994 .
[52] M. Golumbic,et al. On the Complexity of DNA Physical Mapping , 1994 .
[53] Dieter Kratsch,et al. Finding All Minimal Separators of a Graph , 1994, STACS.
[54] Stefan Felsner,et al. Trapezoid Graphs and Generalizations, Geometry and Algorithms , 1994, Discret. Appl. Math..
[55] A. Parra,et al. Eine klasse von graphen, in der Jeder toleranzgraph ein beschrankter toleranzgraph ist , 1994 .
[56] C. Pandu Rangan,et al. Treewidth of Circular-Arc Graphs , 1994, SIAM J. Discret. Math..
[57] Stefan Felsner,et al. On the Interplay Between Interval Dimension and Dimension , 1994, SIAM J. Discret. Math..
[58] Renate Garbe. Tree-width and Path-width of Comparability Graphs of interval Orders , 1994, WG.
[59] Kenneth P. Bogart,et al. Bipartite tolerance orders , 1994, Discret. Math..
[60] Haim Kaplan,et al. Tractability of parameterized completion problems on chordal and interval graphs: minimum fill-in and physical mapping , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[61] Ton Kloks. Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.
[62] M. Habib,et al. Treewidth of cocomparability graphs and a new order-theoretic parameter , 1994 .
[63] Andreas Parra,et al. How to Use the Minimal Separators of a Graph for its Chordal Triangulation , 1995, ICALP.
[64] Neil Robertson,et al. Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.
[65] Dieter Kratsch,et al. Approximating the Bandwidth for Asteroidal Triple-Free Graphs , 1995, J. Algorithms.
[66] Petra Scheffler,et al. Fachbereich 3 Mathematik Treewidth Equals Bandwidth for At-free Claw-free Graphs Treewidth Equals Bandwidth for At-free Claw-free Graphs , 1995 .
[67] Peter C. Fishburn,et al. Proper and Unit Tolerance Graphs , 1995, Discret. Appl. Math..
[68] Dieter Kratsch,et al. Treewidth and Pathwidth of Permutation Graphs , 1995, SIAM J. Discret. Math..
[69] Ton Kloks. Treewidth of Circle Graphs , 1996, Int. J. Found. Comput. Sci..
[70] Rolf H. Möhring,et al. Triangulating Graphs Without Asteroidal Triples , 1996, Discret. Appl. Math..
[71] Jan van Leeuwen,et al. On Interval Routing Schemes and Treewidth , 1995, Inf. Comput..
[72] Zdenek Ryjácek,et al. Claw-free graphs - A survey , 1997, Discret. Math..
[73] Andreas Parra,et al. Triangulating Multitolerance Graphs , 1998, Discret. Appl. Math..
[74] Klaus Jansen,et al. Rankings of Graphs , 1998, SIAM J. Discret. Math..
[75] Stefan Felsner. Tolerance graphs, and orders , 1998 .