Ultrafast control over chiral sum-frequency generation

We introduce an ultrafast all-optical approach for efficient chiral recognition which relies on the interference between two low-order nonlinear processes which are ubiquitous in nonlinear optics: sum-frequency generation and third-harmonic generation. In contrast to traditional sum-frequency generation, our approach encodes the medium's handedness in the intensity of the emitted harmonic signal, rather than in its phase, and it enables full control over the enantiosensitive response. We show how, by sculpting the sub-optical-cycle oscillations of the driving laser field, we can force one molecular enantiomer to emit bright light while its mirror twin remains dark, thus reaching the ultimate efficiency limit of chiral sensitivity via low-order nonlinear light-matter interactions. Our work paves the way for ultrafast and highly efficient imaging and control of the chiral electronic clouds of chiral molecules using lasers with moderate intensities, in all states of matter: from gases to liquids to solids, with molecular specificity and on ultrafast timescales.

[1]  O. Smirnova,et al.  Tilting light’s polarization plane to spatially separate the ultrafast nonlinear response of chiral molecules , 2023, Nanophotonics.

[2]  G. Meijer,et al.  Imaging Photoelectron Circular Dichroism in the Detachment of Mass‐Selected Chiral Anions , 2022, Angewandte Chemie.

[3]  O. Smirnova,et al.  Ultrafast chirality: the road to efficient chiral measurements , 2022, Physical chemistry chemical physics : PCCP.

[4]  O. Smirnova,et al.  Strong chiral response in non-collinear high harmonic generation driven by purely electric-dipole interactions. , 2021, Optics express.

[5]  G. Meijer,et al.  Quantitative Study of Enantiomer-Specific State Transfer. , 2021, Physical review letters.

[6]  D. Ayuso New opportunities for ultrafast and highly enantio-sensitive imaging of chiral nuclear dynamics enabled by synthetic chiral light. , 2021, Physical chemistry chemical physics : PCCP.

[7]  S. Patchkovskii,et al.  Enantiosensitive steering of free-induction decay , 2021, Science advances.

[8]  M. Ivanov,et al.  Ultrafast optical rotation in chiral molecules with ultrashort and tightly focused beams , 2021, Optica.

[9]  M. Ivanov,et al.  Enantio-sensitive unidirectional light bending , 2021, Nature Communications.

[10]  O. Smirnova,et al.  Disentangling enantiosensitivity from dichroism using bichromatic fields. , 2020, Physical chemistry chemical physics : PCCP.

[11]  David A. Strubbe,et al.  Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems. , 2019, The Journal of chemical physics.

[12]  O. Cohen,et al.  Synthetic chiral light for efficient control of chiral light–matter interaction , 2019, Nature Photonics.

[13]  O. Cohen,et al.  Ultrasensitive Chiral Spectroscopy by Dynamical Symmetry Breaking in High Harmonic Generation , 2019, Physical Review X.

[14]  D. Descamps,et al.  Controlling Subcycle Optical Chirality in the Photoionization of Chiral Molecules , 2019, Physical Review X.

[15]  J. Onvlee,et al.  Field-Induced Diastereomers for Chiral Separation. , 2019, Physical review letters.

[16]  M. Chergui,et al.  Broad-Band Ultraviolet CD Spectroscopy of Ultrafast Peptide Backbone Conformational Dynamics. , 2019, The journal of physical chemistry letters.

[17]  T. Giesen,et al.  Principles of enantio-selective excitation in three-wave mixing spectroscopy of chiral molecules. , 2019, The Journal of chemical physics.

[18]  I. Averbukh,et al.  Controlled Enantioselective Orientation of Chiral Molecules with an Optical Centrifuge. , 2019, Physical review letters.

[19]  T. Ishibashi,et al.  Bulk-or-interface assignment of heterodyne-detected chiral vibrational sum frequency generation signal by its polarization dependence. , 2018, The Journal of chemical physics.

[20]  D. Descamps,et al.  Real-time determination of enantiomeric and isomeric content using photoelectron elliptical dichroism , 2018, Nature Communications.

[21]  C. Koch,et al.  Quantum Control of Photoelectron Circular Dichroism. , 2018, Physical review letters.

[22]  T. Baumert,et al.  Photoelectron Circular Dichroism with Two Overlapping Laser Pulses of Carrier Frequencies ω and 2ω Linearly Polarized in Two Mutually Orthogonal Directions. , 2018, Physical review letters.

[23]  K. Lehmann Influence of spatial degeneracy on rotational spectroscopy: Three-wave mixing and enantiomeric state separation of chiral molecules. , 2018, The Journal of chemical physics.

[24]  O. Smirnova,et al.  Generalized perspective on chiral measurements without magnetic interactions , 2018, Physical Review A.

[25]  S. Domingos,et al.  Coherent Enantiomer-Selective Population Enrichment Using Tailored Microwave Fields. , 2017, Angewandte Chemie.

[26]  J. Marangos,et al.  Micrometer-thickness liquid sheet jets flowing in vacuum. , 2017, The Review of scientific instruments.

[27]  A. Harvey,et al.  Photoexcitation circular dichroism in chiral molecules , 2016, Nature Physics.

[28]  D. Descamps,et al.  Probing ultrafast dynamics of chiral molecules using time-resolved photoelectron circular dichroism. , 2016, Faraday discussions.

[29]  D. Descamps,et al.  Relaxation Dynamics in Photoexcited Chiral Molecules Studied by Time-Resolved Photoelectron Circular Dichroism: Toward Chiral Femtochemistry , 2016, The journal of physical chemistry letters.

[30]  D. Patterson,et al.  Enantiomer-Specific State Transfer of Chiral Molecules. , 2016, Physical review letters.

[31]  T. Baumert,et al.  Enantiomeric Excess Sensitivity to Below One Percent by Using Femtosecond Photoelectron Circular Dichroism. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  S. Domingos,et al.  Chiral Analysis Using Broadband Rotational Spectroscopy. , 2016, The journal of physical chemistry letters.

[33]  Xavier Andrade,et al.  Real-space grids and the Octopus code as tools for the development of new simulation approaches for electronic systems. , 2015, Physical chemistry chemical physics : PCCP.

[34]  T. Baumert,et al.  Photoelectron circular dichroism of bicyclic ketones from multiphoton ionization with femtosecond laser pulses. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[35]  I. Powis,et al.  Detecting chirality in molecules by imaging photoelectron circular dichroism. , 2014, Physical chemistry chemical physics : PCCP.

[36]  I. Powis,et al.  Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection. , 2013, The Journal of chemical physics.

[37]  I. Powis,et al.  Vibrationally induced inversion of photoelectron forward-backward asymmetry in chiral molecule photoionization by circularly polarized light , 2013, Nature Communications.

[38]  D. Patterson,et al.  Enantiomer-specific detection of chiral molecules via microwave spectroscopy , 2013, Nature.

[39]  T. Baumert,et al.  Circular dichroism in the photoelectron angular distributions of camphor and fenchone from multiphoton ionization with femtosecond laser pulses. , 2012, Angewandte Chemie.

[40]  N. Berova,et al.  Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. , 2007, Chemical Society reviews.

[41]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[42]  I. Powis,et al.  Circular dichroism in the photoelectron angular distribution from randomly oriented enantiomers of camphor , 2003 .

[43]  D. Wiersma,et al.  New electro-optic effect: sum-frequency generation from optically active liquids in the presence of a dc electric field. , 2003, Physical review letters.

[44]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[45]  I. Thanopulos,et al.  Two-step enantio-selective optical switch. , 2002, Physical review letters.

[46]  C. Legrand,et al.  Comparison of self-interaction-corrections for metal clusters , 2002 .

[47]  F. Wise,et al.  The chiral specificity of sum-frequency generation in solutions , 2002 .

[48]  P. Král,et al.  Cyclic Population Transfer in Quantum Systems with Broken Symmetry , 2001 .

[49]  S. Han,et al.  Sum-frequency generation in chiral liquids near electronic resonance. , 2001, Physical review letters.

[50]  U. Heinzmann,et al.  Asymmetry in photoelectron emission from chiral molecules induced by circularly polarized light. , 2001, Physical review letters.

[51]  T. A. Kulakov,et al.  Sum-frequency vibrational spectroscopy on chiral liquids: a novel technique to probe molecular chirality. , 2000, Physical review letters.

[52]  Fischer,et al.  Three-wave mixing in chiral liquids , 2000, Physical review letters.

[53]  P. Polavarapu,et al.  ABSOLUTE STEREOCHEMISTRY OF CHIRAL MOLECULES FROM AB INITIO THEORETICAL AND EXPERIMENTAL MOLECULAR OPTICAL ROTATIONS , 1998 .

[54]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[55]  P. Stephens,et al.  Vibrational Circular Dichroism , 1976 .

[56]  B. Ritchie Theory of the angular distribution of photoelectrons ejected from optically active molecules and molecular negative ions , 1976 .

[57]  J. Schellman Circular dichroism and optical rotation , 1975 .

[58]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[59]  F. Bloch,et al.  Bemerkung zur Elektronentheorie des Ferromagnetismus und der elektrischen Leitfähigkeit , 1929 .

[60]  François Hache,et al.  Nonlinear optical spectroscopy of chiral molecules. , 2005, Chirality.

[61]  I. Powis Photoelectron circular dichroism of the randomly oriented chiral molecules glyceraldehyde and lactic acid , 2000 .

[62]  V. Lebedev,et al.  A QUADRATURE FORMULA FOR THE SPHERE OF THE 131ST ALGEBRAIC ORDER OF ACCURACY , 1999 .