Parametrizing turbulent exchange over summer sea ice and the marginal ice zone

The surface of the Arctic Ocean in summer is a mix of sea ice and water in both leads and melt ponds. Here we use data collected at multiple sites during the year-long experiment to study the Surface Heat Budget of the Arctic Ocean (SHEBA) to develop a bulk turbulent flux algorithm for predicting the surface fluxes of momentum and sensible and latent heat over the Arctic Ocean during summer from readily measured or modelled quantities. The distinctive aerodynamic feature of summer sea ice is that the leads and melt ponds create vertical ice faces that the wind can push against; momentum transfer to the surface is thus enhanced through form drag. In effect, summer sea ice behaves aerodynamically like the marginal ice zone, which is another surface that consists of sea ice and water. In our bulk flux algorithm, we therefore combine our SHEBA measurements of the neutral-stability drag coefficient at a reference height of 10 m, CDN10, with similar measurements from marginal ice zones that have been reported in the literature to create a unified parametrization for CDN10 for summer sea ice and for any marginal ice zone. This parametrization predicts CDN10 from a second-order polynomial in ice concentration. Our bulk flux algorithm also includes expressions for the roughness lengths for temperature and humidity, introduces new profile stratification corrections for stable stratification, and effectively eliminates the singularities that often occur in iterative flux algorithms for very light winds. In summary, this new algorithm seems capable of estimating the friction velocity u∗ (a surrogate for the momentum flux) over summer sea ice with an absolute accuracy of 0.02 –0.03 m s −1 ; the sensible heat flux, with an accuracy of about 6 W m −2 ; and the latent heat flux, with an accuracy of 3.5 W m −2 .C opyright c � 2010 Royal Meteorological Society

[1]  E. L. Andreas,et al.  Simulations of Snow, Ice, and Near-Surface Atmospheric Processes on Ice Station Weddell , 2004 .

[2]  J. Kaimal,et al.  Another look at sonic thermometry , 1991 .

[3]  Michael R. Raupach,et al.  A wind-tunnel study of turbulent flow close to regularly arrayed rough surfaces , 1980 .

[4]  C. Kottmeier,et al.  Geometric and aerodynamic roughness of sea ice , 1996 .

[5]  J. Curry,et al.  An intermediate one‐dimensional thermodynamic sea ice model for investigating ice‐atmosphere interactions , 1993 .

[6]  E. L. Andreas The Atmospheric Boundary Layer Over Polar Marine Surfaces. , 1996 .

[7]  T. Vihma Subgrid parameterization of surface heat and momentum fluxes over polar oceans , 1995 .

[8]  C. Lüpkes,et al.  ‘Surface Drag in the Arctic Marginal Sea-ice Zone: A Comparison of Different Parameterisation Concepts’ , 2005 .

[9]  Hendrik Huwald,et al.  Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes , 2005 .

[10]  M. R. van den Broeke,et al.  Numerical Studies with a Regional Atmospheric Climate Model Based on Changes in the Roughness Length for Momentum and Heat Over Antarctica , 2004 .

[11]  Jeff Dozier,et al.  Effect of Viewing Angle on the Infrared Brightness Temperature of Snow , 1982 .

[12]  E. F. Bradley,et al.  Bulk parameterization of air‐sea fluxes for Tropical Ocean‐Global Atmosphere Coupled‐Ocean Atmosphere Response Experiment , 1996 .

[13]  P. Guest,et al.  Evaluations of the von Kármán constant in the atmospheric surface layer , 2006, Journal of Fluid Mechanics.

[14]  E. F. Bradley,et al.  Drag due to regular arrays of roughness elements of varying geometry , 1973 .

[15]  M. Raupach Drag and drag partition on rough surfaces , 1992 .

[16]  E. F. Bradley,et al.  A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part I: Theory and Application , 1998 .

[17]  L. Mahrt Bulk formulation of surface fluxes extended to weak‐wind stable conditions , 2008 .

[18]  L. Mahrt Stratified Atmospheric Boundary Layers and Breakdown of Models , 1998 .

[19]  K. Emanuel,et al.  Effects of Sea Spray on Tropical Cyclone Intensity , 2001 .

[20]  R. Anderson Wind stress measurements over rough ice during the 1984 Marginal Ice Zone Experiment , 1987 .

[21]  Edgar L. Andreas,et al.  Heat budget of snow-covered sea ice at North Pole 4 , 1999 .

[22]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[23]  S. Larsen,et al.  Measurement of temperature spectra by a sonic anemometer , 1993 .

[24]  Michael Tjernström,et al.  The vertical structure of the lower Arctic troposphere analysed from observations and the ERA‐40 reanalysis , 2009 .

[25]  C. Willmott Some Comments on the Evaluation of Model Performance , 1982 .

[26]  T. W. Horst,et al.  Parameterizing turbulent exchange over sea ice in winter , 2010 .

[27]  Jonathan D. W. Kahl,et al.  Low-Level Temperature Inversions of the Eurasian Arctic and Comparisons with Soviet Drifting Station Data , 1992 .

[28]  松山 洋 「Statistical Methods in the Atmospheric Sciences(2nd edition), International Geophysics Series 91」, Daniel S. Wilks著, Academic Press, 2005年11月, 648頁, $94.95, ISBN978-0-12-751966-1(本だな) , 2010 .

[29]  P. Guest,et al.  Stable Boundary-Layer Scaling Regimes: The Sheba Data , 2005 .

[30]  Larry Mahrt,et al.  Stratified Atmospheric Boundary Layers , 1999 .

[31]  W. Liu,et al.  Bulk Parameterization of Air-Sea Exchanges of Heat and Water Vapor Including the Molecular Constraints at the Interface , 1979 .

[32]  E. L. Andreas Parameterizing Scalar Transfer over Snow and Ice: A Review , 2002 .

[33]  T. W. Horst,et al.  3.11 TURBULENT TRANSFER COEFFICIENTS AND ROUGHNESS LENGTHS OVER SEA ICE: THE SHEBA RESULTS , 2003 .

[34]  E. L. Andreas,et al.  Air-ice drag coefficients in the western Weddell Sea: 1. Values deduced from profile measurements , 1995 .

[35]  E. F. Bradley,et al.  Bulk Parameterization of Air–Sea Fluxes: Updates and Verification for the COARE Algorithm , 2003 .

[36]  C. J. P. P. Smeets,et al.  The Parameterisation of Scalar Transfer over Rough Ice , 2008 .

[37]  S. Ackley,et al.  Atmospheric boundary‐layer modification, drag coefficient, and surface heat flux in the Antarctic marginal ice zone , 1984 .

[38]  J. K Marshall,et al.  Drag measurements in roughness arrays of varying density and distribution , 1971 .

[39]  J. Deardorff Convective Velocity and Temperature Scales for the Unstable Planetary Boundary Layer and for Rayleigh Convection , 1970 .

[40]  B. Hicks,et al.  Momentum, heat and water vapour transfer to and from natural and artificial surfaces , 1973 .

[41]  Edgar L. Andreas,et al.  SHEBA flux–profile relationships in the stable atmospheric boundary layer , 2007 .

[42]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[43]  B. Denby,et al.  A comparison of surface renewal theory with the observed roughness length for temperature on a melting glacier surface , 2002 .

[44]  E. L. Andreas Air‐ice drag coefficients in the western Weddell Sea: 2. A model based on form drag and drifting snow , 1995 .

[45]  William H. Lipscomb,et al.  Scientific description of the sea ice component in the Community Climate System Model , 2004 .

[46]  G. Maykut Energy exchange over young sea ice in the central Arctic , 1978 .

[47]  Robert E. Dickinson,et al.  Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data , 1998 .

[48]  J. Garratt The Atmospheric Boundary Layer , 1992 .

[49]  P. Guest,et al.  Measurements near the Atmospheric Surface Flux Group tower at SHEBA: Near‐surface conditions and surface energy budget , 2002 .

[50]  S. Arya,et al.  A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice , 1975 .

[51]  Alan K. Betts,et al.  Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface fluxes in the ECMWF model using LBA data , 2002 .

[52]  J. Overland Atmospheric boundary layer structure and drag coefficients over sea ice , 1985 .

[53]  J. Overland,et al.  Regional sensible and radiative heat flux estimates for the winter Arctic during the Surface Heat Budget of the Arctic Ocean (SHEBA) experiment , 2000 .

[54]  Edgar L. Andreas,et al.  A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice , 1987 .

[55]  J. S. Godfrey,et al.  On the turbulent fluxes of buoyancy, heat and moisture at the air-sea interface at low wind speeds , 1991 .

[56]  Kenneth L. Davidson,et al.  The aerodynamic roughness of different types of sea ice , 1991 .

[57]  J. Curry,et al.  Surface Heat Budget of the Arctic Ocean , 2002 .

[58]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2004 .

[59]  E. L. Andreas,et al.  Energy exchange over Antarctic sea ice in the spring , 1985 .

[60]  P. Guest,et al.  The effect of observed ice conditions on the drag coefficient in the summer East Greenland Sea Marginal Ice Zone , 1987 .

[61]  Y. Kwon,et al.  Effects of Sea Spray on Tropical Cyclones Simulated under Idealized Conditions , 2008 .

[62]  William H. Lipscomb,et al.  Influence of the Sea Ice Thickness Distribution on Polar Climate in CCSM3 , 2006 .

[63]  Edgar L. Andreas,et al.  Parameterizing turbulent exchange over sea ice: the ice station weddell results , 2005 .

[64]  T. W. Horst,et al.  J1.15 PARAMETERIZING THE TURBULENT SURFACE FLUXES OVER SUMMER SEA ICE , 2004 .

[65]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[66]  T. Vihma,et al.  Derivation of turbulent surface fluxes — An iterative flux-profile method allowing arbitrary observing heights , 1990 .

[67]  E. L. Andreas Handbook of Physical Constants and Functions for Use in Atmospheric Boundary Layer Studies , 2005 .

[68]  T. W. Horst,et al.  Near-surface water vapor over polar sea ice is always near ice saturation , 2002 .

[69]  Y. Shao,et al.  A scheme for drag partition over rough surfaces , 2005 .

[70]  Edgar L. Andreas,et al.  An annual cycle of Arctic surface cloud forcing at SHEBA : The surface heat budget of arctic ocen (SHEBA) , 2002 .

[71]  H. Diaz,et al.  Recent changes in the North American Arctic boundary layer in winter , 1993 .

[72]  Stephen G. Warren,et al.  Optical Properties of Snow , 1982 .

[73]  X. Zeng,et al.  An intercomparison of bulk aerodynamic algorithms used over sea ice with data from the Surface Heat Budget for the Arctic Ocean (SHEBA) experiment , 2006 .

[74]  Edgar L. Andreas,et al.  On the turbulent Prandtl number in the stable atmospheric boundary layer , 2007 .

[75]  K. Taylor,et al.  The Community Climate System Model , 2001 .

[76]  J. Finnigan,et al.  Atmospheric Boundary Layer Flows: Their Structure and Measurement , 1994 .

[77]  C. Lüpkes,et al.  A new parameterization of surface drag in the marginal sea ice zone , 2002 .

[78]  C. J. P. P. Smeets,et al.  Turbulence Characteristics of the Stable Boundary Layer Over a Mid-Latitude Glacier. Part I: A Combination of Katabatic and Large-Scale Forcing , 1998 .

[79]  S. Anderson,et al.  A New Look at Calibration and Use of Eppley Precision Infrared Radiometers. Part II: Calibration and Use of the Woods Hole Oceanographic Institution Improved Meteorology Precision Infrared Radiometer* , 1999 .

[80]  H. E. Jobson Evaporation Into the Atmosphere: Theory, History, and Applications , 1982 .

[81]  Walter B. Tucker,et al.  Aerial observations of the evolution of ice surface conditions during summer , 2002 .

[82]  Frans T. M. Nieuwstadt,et al.  Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes , 1983 .

[83]  L. Mahrt,et al.  Evaluation of the air‐sea bulk formula and sea‐surface temperature variability from observations , 2006 .

[84]  Jonathan D. W. Kahl,et al.  Characteristics of the low‐level temperature inversion along the Alaskan Arctic coast , 1990 .

[85]  R. Griffiths,et al.  An improved method for the estimation of surface roughness of obstacle arrays , 1998 .

[86]  E. L. Andreas,et al.  A Bulk Turbulent Air-Sea Flux Algorithm for High-Wind, Spray Conditions , 2008 .

[87]  A. Holtslag,et al.  Applied Modeling of the Nighttime Surface Energy Balance over Land , 1988 .