Novel summation formulas for Jacobi and Gegenbauer polynomials
暂无分享,去创建一个
[1] J. Percus,et al. A functional relation among the pair correlations of the two-dimensional one-component plasma , 1995 .
[2] Kerstin Vogler,et al. Table Of Integrals Series And Products , 2016 .
[3] Miomir S. Stanković,et al. On the Orthogonality of Classical Orthogonal Polynomials , 2003 .
[4] A simple approach to Jacobi polynomials , 2007 .
[5] A. Wunsche. Generating Functions for Products of Special Laguerre 2D and Hermite 2D Polynomials , 2016, 1603.07657.
[6] Is the Two-Dimensional One-Component Plasma Exactly Solvable? , 2004, cond-mat/0402027.
[7] Z. Bajnok,et al. Introduction to the Statistical Physics of Integrable Many-body Systems , 2013 .
[8] Howard S. Cohl,et al. On a generalization of the generating function for Gegenbauer polynomials , 2011, 1105.2735.
[9] Stephen Wolfram,et al. The Mathematica Book , 1996 .
[10] Indefinite integrals for some orthogonal polynomials obtained using integrating factors , 2020 .
[11] Summation identities involving certain classes of polynomials , 2013 .
[12] Leon M. Hall,et al. Special Functions , 1998 .
[13] I︠u︡. A Brychkov. Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas , 2008 .
[14] Ervin Feldheim. Relations entre les polynomes de Jacobi, Laguerre et Hermite , 1942 .
[15] Indefinite integrals involving Jacobi polynomials from integrating factors , 2020, Integral Transforms and Special Functions.
[16] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[17] N. L. Harshman,et al. Introduction to Quantum Mechanics (3rded.) , 2019, American Journal of Physics.
[18] Robert S. Maier. Algebraic generating functions for Gegenbauer polynomials , 2016, 1607.05215.
[19] B. Jancovici. Exact results for the two-dimensional one-component plasma , 1981 .
[20] U. Sukhatme,et al. Mapping of shape invariant potentials under point canonical transformations , 1992 .