Novel summation formulas for Jacobi and Gegenbauer polynomials

Thermal equilibrium of a two-dimensional model of mobile point-like charges with pair logarithmic interactions, immersed in a fixed neutralising background, is exactly solvable at a special coupling constant. Assuming gauge invariance of the statistical mechanics and the requirement of local charge neutrality in the bulk regime of the system, the exact solution implies explicit expressions for inverse elements of an infinite interaction matrix. This result is equivalent to new summation formulas over upper index for bilinear products of Jacobi and Gegenbauer polynomials which are complementary to standard completeness relations involving lower indices for these polynomials. We go beyond the physical input and derive multi-variable generalizations of the summation formulas.

[1]  J. Percus,et al.  A functional relation among the pair correlations of the two-dimensional one-component plasma , 1995 .

[2]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[3]  Miomir S. Stanković,et al.  On the Orthogonality of Classical Orthogonal Polynomials , 2003 .

[4]  A simple approach to Jacobi polynomials , 2007 .

[5]  A. Wunsche Generating Functions for Products of Special Laguerre 2D and Hermite 2D Polynomials , 2016, 1603.07657.

[6]  Is the Two-Dimensional One-Component Plasma Exactly Solvable? , 2004, cond-mat/0402027.

[7]  Z. Bajnok,et al.  Introduction to the Statistical Physics of Integrable Many-body Systems , 2013 .

[8]  Howard S. Cohl,et al.  On a generalization of the generating function for Gegenbauer polynomials , 2011, 1105.2735.

[9]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[10]  Indefinite integrals for some orthogonal polynomials obtained using integrating factors , 2020 .

[11]  Summation identities involving certain classes of polynomials , 2013 .

[12]  Leon M. Hall,et al.  Special Functions , 1998 .

[13]  I︠u︡. A Brychkov Handbook of Special Functions: Derivatives, Integrals, Series and Other Formulas , 2008 .

[14]  Ervin Feldheim Relations entre les polynomes de Jacobi, Laguerre et Hermite , 1942 .

[15]  Indefinite integrals involving Jacobi polynomials from integrating factors , 2020, Integral Transforms and Special Functions.

[16]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[17]  N. L. Harshman,et al.  Introduction to Quantum Mechanics (3rded.) , 2019, American Journal of Physics.

[18]  Robert S. Maier Algebraic generating functions for Gegenbauer polynomials , 2016, 1607.05215.

[19]  B. Jancovici Exact results for the two-dimensional one-component plasma , 1981 .

[20]  U. Sukhatme,et al.  Mapping of shape invariant potentials under point canonical transformations , 1992 .