Fire, Climate Change, and Carbon Cycling in the Boreal Forest

Preface Introduction Section I: Information Requirements and Fire Management and Policy Issues The Role of Boreal Ecosystems in the Global Carbon Cycle Boreal Forest Fire Emissions and the Chemistry of the Atmosphere The Eurasian Perspective of Fire: Dimension, Management, Policies and Scientific Requirements Fire Management in the Boreal Forests of Canada Effects of Climate Change on Management, Policy and Mitigation Options in the Boreal Forest Section II: Processes Influencing Carbon Dynamics in the Boreal Forest The Distribution of Forest Ecosystems and the Role of Fire in the North American Boreal Region Extent, Distribution and Ecological Role of Fire in Russian Forests Long-term Perspectives on Fire-Climate-Vegetation Relationships in the North American Boreal Forest Controls on Patterns of Biomass Burning in Alaskan Boreal Forests Post-Fire Stimulation of Microbial Decomposition in Black Spruce (Picea mariana L.) Forest Soils: A Hypothesis The Influence of Fire on Long-Term Patterns of Forest Succession in Alaskan Boreal Forests Section III: Spatial Data Sets for the Analysis of Carbon Dynamics in Boreal Forests And much more....

[1]  Leslie A. Viereck,et al.  Climatic Characteristics of the Taiga in Interior Alaska , 1986 .

[2]  Dale W. Johnson Effects of forest management on soil carbon storage , 1992 .

[3]  David L. Martell,et al.  A Stochastic Model for the Occurrence of Man-caused Forest Fires , 1973 .

[4]  I. C. Prentice,et al.  BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types , 1996 .

[5]  R. Moss,et al.  Climate change 1995 - impacts, adaptations and mitigation of climate change : scientific-technical analyses , 1997 .

[6]  Roger McHaney Computer Simulation: A Practical Perspective , 1991 .

[7]  Kyle McDonald,et al.  Evaluating the type and state of Alaska taiga forests with imaging radar for use in ecosystem models , 1994, IEEE Trans. Geosci. Remote. Sens..

[8]  B. Stocks,et al.  Fire Weather Climatology in Canada and Russia , 1996 .

[9]  Eric Rignot,et al.  Monitoring seasonal variations in boreal ecosystems using multi-temporal spaceborne SAR data , 1995 .

[10]  Eville Gorham,et al.  Litter Production in Forests of the World , 1964 .

[11]  K. Boehnke,et al.  Detecting soil thawing in siberia with ERS scatterometer and SAR , 1997 .

[12]  Leslie A. Viereck,et al.  The effects of fire in black spruce ecosystems of Alaska and northern Canada , 1983 .

[13]  Martin A. Uman,et al.  Continuing current in negative cloud‐to‐ground lightning , 1989 .

[14]  M. C. MacCracken,et al.  The U.S. Global Change Research Program , 1994 .

[15]  J. Townshend,et al.  Global discrimination of land cover types from metrics derived from AVHRR pathfinder data , 1995 .

[16]  A. Isaev,et al.  Carbon stock and deposition in phytomass of the Russian forests , 1995 .

[17]  Xiangming Xiao,et al.  Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration , 1997 .

[18]  M. R. Carter,et al.  Terrestrial Ecosystems , 2018, Critical Transitions in Nature and Society.

[19]  M. Flannigan,et al.  CLIMATE CHANGE AND WILDFIRE IN CANADA , 1991 .

[20]  F. Woodward Climate and plant distribution , 1987 .

[21]  J. C. Price The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation , 1980 .

[22]  S. Nilsson,et al.  Burning biomass in the territories of the former Soviet Eurasia: Impact on the carbon budget , 1995 .

[23]  L. Morrissey,et al.  Methane Emissions from Alaska Arctic Tundra in Response to Climatic Change , 1992 .

[24]  Mike D. Flannigan,et al.  Length of the fire season in a changing climate , 1993 .

[25]  C. J. Tucker,et al.  Relationship between atmospheric CO2 variations and a satellite-derived vegetation index , 1986, Nature.

[26]  Jeffrey M. Klopatek,et al.  Fire in the Boreal Forest , 1994 .

[27]  J. Zyl,et al.  Unsupervised classification of scattering behavior using radar polarimetry data , 1989 .

[28]  W. Hao,et al.  Methane production from global biomass burning , 1993 .

[29]  Philippe H. Martin,et al.  Vegetation responses and feedbacks to climate: a review of models and processes , 1993 .

[30]  M. L. Heinselman,et al.  Forest Sites, Bog Processes, and Peatland Types in the Glacial Lake Agassiz Region, Minnesota , 1963 .

[31]  A. R. Taylor,et al.  Lightning discharges that caused forest fires , 1972 .

[32]  S. Zimov,et al.  Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2 , 1999, Science.

[33]  James B. Harrington,et al.  A Study of the Relation of Meteorological Variables to Monthly Provincial Area Burned by Wildfire in Canada (1953–80) , 1988 .

[34]  W. D. Billings,et al.  Carbon Dioxide Flux from Tundra Soils and Vegetation as Related to Temperature at Barrow, Alaska , 1975 .

[35]  A. R. Taylor,et al.  Characteristics of seven lightning discharges that caused forest fires , 1967 .

[36]  S. Moreland The Lightning Discharge , 1890, Nature.

[37]  B. Stocks Global warming and forest fires in Canada , 1993 .

[38]  F. Fiene,et al.  Comparison of Ashing Techniques for Determination of the Inorganic Content of Peats , 1983 .

[39]  S. Prince A model of regional primary production for use with coarse resolution satellite data , 1991 .

[40]  D. Rind,et al.  Global Change: Effects on Forest Ecosystems and Wildfire Severity , 1990 .

[41]  B. Stocks,et al.  Risk Analysis in Strategic Planning: Fire and Climate Change in the Boreal Forest , 1996 .

[42]  T. Vinson,et al.  Equilibrium analysis of carbon pools and fluxes of forest biomes in the former Soviet Union , 1993 .

[43]  C. E. Van Wagner,et al.  Age-class distribution and the forest fire cycle , 1978 .

[44]  M. Flannigan,et al.  Future wildfire in circumboreal forests in relation to global warming , 1998 .

[45]  B. Warner,et al.  A postglacial history of vegetation and bog formation at Point Escuminac, New Brunswick , 1991 .

[46]  Leonard J. Porcello,et al.  An introduction to synthetic-aperture radar , 1969, IEEE Spectrum.

[47]  T. Vinson,et al.  Carbon sources and sinks in forest biomes of the former Soviet Union , 1993 .

[48]  L. Morrissey,et al.  Effects of fires on carbon cycling in North American boreal peatlands , 1998 .

[49]  James E. Vogelmann,et al.  Assessing forest decline in coniferous forests of Vermont using NS-001 Thematic Mapper Simulator data , 1986 .

[50]  P. Crutzen,et al.  Estimates of Annual and Regional Releases of CO2 and Other Trace Gases to the Atmosphere from Fires in the Tropics, Based on the FAO Statistics for the Period 1975–1980 , 1990 .

[51]  R. Birdsey,et al.  Carbon in vegetation of Russian forests: Methods to estimate storage and geographical distribution , 1995 .

[52]  Susan L. Ustin,et al.  Monitoring of wildfires in boreal forests using large area AVHRR NDVI composite image data , 1993 .

[53]  Hsin-I Wu,et al.  Ecological field theory: A spatial analysis of resource interference among plants , 1985 .

[54]  Gloor,et al.  A Large Terrestrial Carbon Sink in North America Implied by Atmospheric and Oceanic Carbon Dioxide Data and Models , 2022 .

[55]  W. Oechel,et al.  The Role of Bryophytes in Nutrient Cycling in the Taiga , 1986 .

[56]  Thomas R. Loveland,et al.  USING MULTISOURCE DATA IN GLOBAL LAND-COVER CHARACTERIZATION: CONCEPTS, REQUIREMENTS, AND METHODS , 1993 .

[57]  L. Viereck Wildfire in the Taiga of Alaska , 1973, Quaternary Research.

[58]  Helmut Epp,et al.  Satellite data and geographic information systems for fire and resource management in the Canadian arctic , 1996 .

[59]  Peter M. Vitousek,et al.  Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures , 1992 .

[60]  Christopher B. Field,et al.  Mapping the land surface for global atmosphere‐biosphere models: Toward continuous distributions of vegetation's functional properties , 1995 .

[61]  John A. Richards,et al.  The effect of changing environmental conditions on microwave signatures of forest ecosystems - Preliminary results of the March 1988 Alaskan aircraft SAR experiment , 1990 .

[62]  David Rind,et al.  The Impact of a 2 × CO2 Climate on Lightning-Caused Fires , 1994 .

[63]  J. Cihlar,et al.  Multitemporal, multichannel AVHRR data sets for land biosphere studies—Artifacts and corrections , 1997 .

[64]  M. Harmon,et al.  Dynamics of the dead wood carbon pool in northwestern Russian boreal forests , 1995 .

[65]  Ariel E. Lugo,et al.  Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data , 1989, Forest Science.

[66]  Eric S. Kasischke,et al.  Sensitivity of ERS-1 and JERS-1 radar data to biomass and stand structure in Alaskan boreal forest , 1995 .

[67]  Brian J. Stocks,et al.  The extent and impact of forest fires in northern circumpolar countries , 1991 .

[68]  S. Frolking Sensitivity of spruce/moss boreal forest net ecosystem productivity to seasonal anomalies in weather , 1997 .

[69]  Gordon B. Bonan,et al.  Soil temperature, nitrogen mineralization, and carbon source–sink relationships in boreal forests , 1992 .

[70]  Ramakrishna R. Nemani,et al.  Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates , 1988 .

[71]  Thomas M. Smith,et al.  A global land primary productivity and phytogeography model , 1995 .

[72]  Herman H. Shugart,et al.  The sensitivity of some high-latitude boreal forests to climatic parameters , 1990 .

[73]  Ted S. Vinson,et al.  Identification of carbon quantifiable regions in the former Soviet Union using unsupervised classification of AVHRR global vegetation index images , 1994 .

[74]  C. Peng,et al.  simulating carbon dynamics along the Boreal Forest Transect Case Study (BFTCS) in central Canada: 2. Sensitivity to climate change , 1998 .

[75]  R. K. Dixon,et al.  Forest fires in Russia: carbon dioxide emissions to the atmosphere , 1993 .

[76]  R. Mark,et al.  Dynamics of Soil Carbon During Deglaciation of the Laurentide Ice Sheet , 1992, Science.

[77]  B. N. Holben,et al.  Towards operational radiometric calibration of NOAA AVHRR imagery in the visible and near-infrared channels , 1994 .

[78]  D. Williams,et al.  FIRE SEASON SEVERITY RATING , 1959 .

[79]  W. Cramer,et al.  A global biome model based on plant physiology and dominance, soil properties and climate , 1992 .

[80]  T. Sharkey,et al.  Stomatal conductance and photosynthesis , 1982 .

[81]  S. Running,et al.  Mapping Regional Forest Evapotranspiration And Photosynthesis By Coupling Satellite Data With Ecosystem Simulation , 1989, 10th Annual International Symposium on Geoscience and Remote Sensing.

[82]  S. Trumbore,et al.  Moss and soil contributions to the annual net carbon flux of a maturing boreal forest , 1997 .

[83]  C. E. V. Wagner The Historical Pattern of Annual Burned Area in Canada , 1988 .

[84]  P. Kuhry The Role of Fire in the Development of Sphagnum-Dominated Peatlands in Western Boreal Canada , 1994 .

[85]  Igor I. Mokhov,et al.  Climatological features of blocking anticyclones: a study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres , 1997 .

[86]  J. Eidenshink The 1990 conterminous U. S. AVHRR data set , 1992 .

[87]  C. T. Dyrness,et al.  Forest Ecosystems in the Alaskan Taiga , 1986, Ecological Studies.

[88]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[89]  P. Laval Hierarchical object-oriented design of a concurrent, individual-based, model of a pelagic Tunicate bloom , 1995 .

[90]  David L. Martell,et al.  Modelling seasonal variation in daily people-caused forest fire occurrence , 1989 .

[91]  I. R. Cowan Economics of carbon fixation in higher plants , 1986 .

[92]  Jiancheng Shi,et al.  Monitoring of environmental conditions in Taiga forests using ERS-1 SAR , 1994 .

[93]  C. T. Dyrness,et al.  The effect of wildfire on soil chemistry in four forest types in interior Alaska , 1989 .

[94]  R. Sampson Forestry opportunities in the United States to mitigate the effects of global warming , 1992 .

[95]  S. Nilsson,et al.  Forest phytomass and carbon in European Russia , 1997 .

[96]  E. Kasischke,et al.  Locating and estimating the areal extent of wildfires in alaskan boreal forests using multiple-season AVHRR NDVI composite data , 1995 .

[97]  Mike D. Flannigan,et al.  Canadian boreal forest ecosystem structure and function in a changing climate: impact on fire regimes , 1997 .

[98]  David L. Martell,et al.  A logistic model for predicting daily people-caused forest fire occurrence in Ontario , 1987 .

[99]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[100]  Eric S. Kasischke,et al.  Initial observations of Radarsat imagery at fire-disturbed sites in interior Alaska , 1999 .

[101]  J. Overpeck,et al.  Climate-induced changes in forest disturbance and vegetation , 1990, Nature.

[102]  William M. Schaffer,et al.  Plant strategies and the dynamics and structure of plant communities , 1989 .

[103]  Joel S. Levine,et al.  The great Chinese fire of 1987 - A view from space , 1991 .

[104]  T. H. Haar,et al.  Forest fire monitoring using NOAA satellite AVHRR , 1986 .

[105]  C. Potter,et al.  Global patterns of carbon dioxide emissions from soils on a 0.5-degree-grid-cell basis , 1995 .

[106]  Patrick M. Crill,et al.  Carbon balance of a temperate poor fen , 1997 .

[107]  R. Wein,et al.  Potential Carbon Losses From Peat Profiles: Effects of Temperature, Drought Cycles, and Fire. , 1992, Ecological applications : a publication of the Ecological Society of America.

[108]  Edward J. Rykiel,et al.  Artificial intelligence and expert systems in ecology and natural resource management , 1989 .

[109]  H. Lutz,et al.  Aboriginal man and white man as historical causes of fires in the boreal forest, with particular reference to Alaska , 1959 .

[110]  Pekka E. Kauppi,et al.  Biomass and Carbon Budget of European Forests, 1971 to 1990 , 1992, Science.

[111]  S. Running,et al.  Simulated dry matter yields for aspen and spruce stands in the North American boreal forest , 1992 .

[112]  Photosynthetically active radiation absorbed by global land vegetation in August 1984 , 1993 .

[113]  C. Tucker,et al.  Increased plant growth in the northern high latitudes from 1981 to 1991 , 1997, Nature.

[114]  Yong Wang,et al.  Please Scroll down for Article International Journal of Remote Sensing the Effects of Changes in Forest Biomass on Radar Backscatter from Tree Canopies , 2022 .

[115]  Philip W. Rundel,et al.  Landscape Disturbance and Biodiversity in Mediterranean-Type Ecosystems , 1998 .

[116]  J. Chen,et al.  A process-based boreal ecosystem productivity simulator using remote sensing inputs , 1997 .

[117]  John M. Norman,et al.  Carbon distribution and aboveground net primary production in aspen, jack pine, and black spruce stands in Saskatchewan and Manitoba, Canada , 1997 .

[118]  Darrel L. Williams,et al.  Initial results from the boreal ecosystem-atmosphere experiment, BOREAS. , 1996 .

[119]  S. Running,et al.  Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models. Scaling processes between leaf and landscape levels , 1993 .

[120]  R. Reynolds,et al.  Global surface air temperature in 1995: Return to pre‐Pinatubo level , 1996 .

[121]  S. Running,et al.  A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes , 1988 .

[122]  Jianguo Liu,et al.  Individual-based simulation models for forest succession and management , 1995 .

[123]  P. Martikainen,et al.  Emissions of CH4, N20 and CO2 from a virgin fen and a fen drained for grassland in Finland , 1995 .

[124]  E. Kasischke,et al.  Fire, Global Warming, and the Carbon Balance of Boreal Forests , 1995 .

[125]  J. Levine,et al.  Biomass Burning: A Driver for Global Change! , 1995 .

[126]  Leslie A. Viereck,et al.  Forest Succession and Soil Development Adjacent to the Chena River in Interior Alaska , 1970, Arctic and Alpine Research.

[127]  Christopher B. Field,et al.  Substrate limitations for heterotrophs: Implications for models that estimate the seasonal cycle of atmospheric CO2 , 1996 .

[128]  D. C. West,et al.  Forest Succession Models , 1980 .

[129]  E. Kasischke,et al.  Estimating release of carbon from 1990 and 1991 forest fires in Alaska , 1995 .

[130]  Leslie A. Viereck,et al.  Productivity and nutrient cycling in taiga forest ecosystems , 1983 .

[131]  Jack D. Cohen,et al.  The 1978 National Fire-Danger Rating System: technical documentation , 1984 .

[132]  R. Wein,et al.  Bog profile evidence of fire and vegetation dynamics since 3000 years BP in the Acadian Forest , 1987 .

[133]  K. Cleve,et al.  Relationships between CO2 evolution from soil, substrate temperature, and substrate moisture in four mature forest types in interior Alaska , 1985 .

[134]  Eric S. Kasischke,et al.  Observations on the sensitivity of ERS-1 SAR image intensity to changes in aboveground biomass in young loblolly pine forests , 1994 .

[135]  D. I. Sebacher,et al.  The effects of fire on biogenic emissions of methane and nitric oxide from wetlands , 1990 .

[136]  Brent N. Holben,et al.  Identifying deforestation in Brazil using multiresolution satellite data , 1986 .

[137]  Joel S. Levine,et al.  Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia , 1994 .

[138]  Thomas M. Smith,et al.  Modeling the Potential Response of Vegetation to Global Climate Change , 1992 .

[139]  David P. Turner,et al.  A Carbon Budget for Forests of the Conterminous United States , 1995 .

[140]  Yonghe Wang,et al.  Canada’s Forest Biomass Resources: Deriving Estimates from Canada’s Forest Inventory , 1997 .

[141]  R. Hartford Smoldering combustion limits in peat as influenced by moisture mineral content and organic bulk density , 1993 .

[142]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .