Cooperativity effects in linear formaldehyde oligomers using density functional theory calculations

[1]  Timothy Clark,et al.  Polarization-induced σ-holes and hydrogen bonding , 2012, Journal of Molecular Modeling.

[2]  S. Amani,et al.  HNO(H2O)n (n = 1–4) clusters: a theoretical study , 2011 .

[3]  D. Quiñonero,et al.  Cooperativity in multiple unusual weak bonds , 2010 .

[4]  Peter Politzer,et al.  Halogen bonding and the design of new materials: organic bromides, chlorides and perhaps even fluorides as donors , 2007, Journal of molecular modeling.

[5]  M. Andersson,et al.  New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-zeta basis set 6-311+G(d,p). , 2005, The journal of physical chemistry. A.

[6]  Steve Scheiner,et al.  Comparison of Cooperativity in CH···O and OH···O Hydrogen Bonds , 2004 .

[7]  Shridhar R Gadre,et al.  Many-body interaction analysis: algorithm development and application to large molecular clusters. , 2004, The Journal of chemical physics.

[8]  Shyi-Long Lee,et al.  A computational study of microsolvation effect on ethylene glycol by density functional method. , 2004, The Journal of chemical physics.

[9]  Seung Bum Suh,et al.  Nature of one-dimensional short hydrogen bonding: bond distances, bond energies, and solvent effects. , 2004, Journal of the American Chemical Society.

[10]  Lu Wu,et al.  Local analysis and comparative study of the hydrogen bonds in the linear (HCN)n and (HNC)n clusters , 2003 .

[11]  Kenichiro Koga,et al.  Ab initio studies of quasi-one-dimensional pentagon and hexagon ice nanotubes , 2003 .

[12]  S. Bulusu,et al.  Cooperative effects in one-dimensional chains of three-center hydrogen bonding interactions , 2003 .

[13]  Gabriel Ciobanu,et al.  Molecular interaction , 2002, Theor. Comput. Sci..

[14]  Bing Gong,et al.  Energetics and cooperativity in three-center hydrogen bonding interactions. I. Diacetamide-X dimers (X=HCN, CH3OH) , 2001 .

[15]  J. Dannenberg,et al.  Cooperativity in amide hydrogen bonding chains: implications for protein-folding models. , 2001, Journal of the American Chemical Society.

[16]  P. Wormer,et al.  Intermolecular potentials, internal motions, and spectra of van der waals and hydrogen-bonded complexes. , 2000, Chemical reviews.

[17]  Sotiris S. Xantheas,et al.  Cooperativity and Hydrogen Bonding Network in Water Clusters , 2000 .

[18]  A. Sum,et al.  Ab Initio Calculations of Cooperativity Effects on Clusters of Methanol, Ethanol, 1-Propanol, and Methanethiol , 2000 .

[19]  J. Dannenberg,et al.  Theoretical Study of Urea and Thiourea. 2. Chains and Ribbons , 2000 .

[20]  R. Ludwig,et al.  Quantum Cluster Equilibrium Theory of Liquids: Temperature Dependence of Hydrogen Bonding in Liquid N-Methylacetamide Studied by IR Spectra , 1998 .

[21]  José Elguero,et al.  Non-conventional hydrogen bonds , 1998 .

[22]  István Mayer,et al.  Hierarchy of counterpoise corrections for N-body clusters: generalization of the Boys-Bernardi scheme , 1997 .

[23]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[24]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[25]  J. Leszczynski,et al.  Abinitio study on the stability and properties of XYCO⋅ ⋅ ⋅HZ complexes. III. A comparative study of basis set and electron correlation effects for H2CO⋅ ⋅ ⋅HCl , 1996 .

[26]  Frank Weinhold,et al.  Structure and spectroscopy of (HCN)n clusters: Cooperative and electronic delocalization effects in C–H⋅⋅⋅N hydrogen bonding , 1995 .

[27]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. II. Analysis of many‐body interactions , 1994 .

[28]  Sotiris S. Xantheas,et al.  Ab initio studies of cyclic water clusters (H2O)n, n=1–6. I. Optimal structures and vibrational spectra , 1993 .

[29]  P. Jagodzinski,et al.  Infrared spectra of H2CO, H213CO, D2CO, and D213CO and anomalous values in vibrational force fields , 1991 .

[30]  P. Cieplak,et al.  Ab initio study of intermolecular potential of H2O trimer , 1991 .

[31]  Surjit Singh,et al.  The cooperativity effect and the effect of self-association on the stretching force constants of acetonitrile , 1989 .

[32]  S. Scheiner,et al.  Nonadditive effects in HF and HCl trimers , 1989 .

[33]  S. Scheiner,et al.  Structure, Energetics, and Vibrational Spectra of H-Bonded Systems. Dimers and Trimers of HF and HCl , 1988 .

[34]  S. Scheiner,et al.  Vibrational frequencies and intensities of H‐bonded systems. 1:1 and 1:2 complexes of NH3 and PH3 with HF , 1987 .

[35]  S. Scheiner,et al.  Ab initio study of structure and cooperativity in H3N−HF−HF and H3P−HF−HF , 1986 .

[36]  W. C. Ermler,et al.  Polyatomic, anharmonic, vibrational–rotational analysis. Application to accurate ab initio results for formaldehyde , 1985 .

[37]  J. Muenter,et al.  Molecular beam electric resonance study of formaldehyde, thioformaldehyde, and ketene , 1977 .

[38]  J. L. Duncan,et al.  The ground-state average and equilibrium structures of formaldehyde and ethylene , 1974 .

[39]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[40]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[41]  S. J. Grabowski,et al.  Hydrogen Bonding—New Insights , 2006 .

[42]  Shyi-Long Lee,et al.  Density functional study of hydrogen‐bonded acetonitrile–water complex , 2005 .

[43]  Shyi-Long Lee,et al.  Many-body interaction in glycine-(water)3 complex using density functional theory method. , 2004, The Journal of chemical physics.

[44]  M. Yappert,et al.  Cooperative hydrogen- and πH-bonded interactions involving water and the ethylenic double bond , 2002 .

[45]  D. Bu Ab initio Calculations of Protonated Ethylenediamine-(water)3 Complex: Roles of Intramolecular Hydrogen Bonding and Hydrogen Bond Cooperativity , 2001 .