Tensile yield behavior and precipitation strengthening mechanism in Super304H steel

[1]  Xishan Xie,et al.  The precipitation strengthening behavior of Cu-rich phase in Nb contained advanced Fe–Cr–Ni type austenitic heat resistant steel for USC power plant application , 2012 .

[2]  Ke Yang,et al.  Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel , 2011 .

[3]  S. Onaka,et al.  Inverse temperature dependence of activation volume in ultrafine-grained copper processed by accumulative roll-bonding , 2011 .

[4]  Z. Zou,et al.  Microstructure Evolution of a Novel Super304H Steel Aged at High Temperatures , 2010 .

[5]  D. Isheim,et al.  Origin of copper precipitation strengthening in steel revisited , 2005 .

[6]  J. Shingledecker,et al.  U.S. program on materials technology for ultra-supercritical coal power plants , 2005 .

[7]  R. Monzen,et al.  Ostwald ripening of spherical Fe particles in Cu-Fe alloys , 2002 .

[8]  D. Bacon,et al.  Computer simulation of the core structure of the screw dislocation in α-iron containing copper precipitates: II. dislocation–precipitate interaction and the strengthening effect , 2002 .

[9]  D. Bacon,et al.  Computer simulation of the core structure of the screw dislocation in α-iron containing copper precipitates: I. structure in the matrix and a precipitate , 2002 .

[10]  G. Odette,et al.  Low temperature yield properties of two 7–9Cr ferritic/martensitic steels , 1999 .

[11]  R. Schäublin,et al.  Evolution of the mechanical properties of the F82H ferritic/martensitic steel after 590 MeV proton irradiation , 1998 .

[12]  G. Kresse,et al.  First principles calculation of oxygen adsorption and reconstruction of Cu(110) surface , 1998 .

[13]  Y. Bréchet,et al.  Thermal ageing of an Fe‒Cu alloy: Microstructural evolution and precipitation hardening , 1996 .

[14]  G. Smith,et al.  High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe , 1994 .

[15]  H. Okuda,et al.  Precipitation Hardening in Fe-Cu Binary and Quaternary Alloys , 1994 .

[16]  G. Smith,et al.  Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe—Cu and Fe—Cu—Ni , 1991 .

[17]  K. Roberts,et al.  A fluorescence EXAFS study of the structure of copper-rich precipitates in Fe–Cu and Fe–Cu–Ni alloys , 1990 .

[18]  L. Murr Interfacial phenomena in metals and alloys , 1975 .

[19]  S. R. Goodman,et al.  An FIM-atom probe study of the precipitation of copper from lron-1.4 at. pct copper. Part I: Field-ion microscopy , 1973 .

[20]  L. Brown,et al.  A dispersion strengthening model based on differing elastic moduli applied to the iron-copper system , 1972 .

[21]  M. Cagnon The role of entropy in thermally activated deformation: Application to the study of irradiation hardening in LiF , 1971 .

[22]  G. Schoeck The Activation Energy of Dislocation Movement , 1965, February 1.

[23]  A. Kelly,et al.  Stacking-fault strengthening , 1965 .