New distortion-invariant SVRDM hierarchical classifier

A hierarchical classifier using a new SVRDM (support vector representation and discrimination machine) is proposed for automatic target recognition. Shift and scale-invariant features are considered. In addition, we consider the ability of the classifier to reject non-object class or clutter inputs. Initial recognition and rejection test results on infra-red (IR) data are excellent.

[1]  Joydeep Ghosh,et al.  Modular learning through output space decomposition , 2000 .

[2]  Joydeep Ghosh,et al.  Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis , 2002, Pattern Analysis & Applications.

[3]  Thomas S. Huang,et al.  One-class SVM for learning in image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[4]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[5]  Shen-ge Wang,et al.  Pattern Recognition Using The Ring-Wedge Detector And Neural-Network Software , 1989, Other Conferences.

[6]  Kishan G. Mehrotra,et al.  Efficient classification for multiclass problems using modular neural networks , 1995, IEEE Trans. Neural Networks.

[7]  George G. Lendaris,et al.  Diffraction-pattern sampling for automatic pattern recognition , 1970 .

[8]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[9]  Joydeep Ghosh,et al.  Classification of hyperspectral data using best-bases feature extraction algorithms , 2000, SPIE Defense + Commercial Sensing.

[10]  D. Casasent,et al.  Support vector machines for class representation and discrimination , 2003, Proceedings of the International Joint Conference on Neural Networks, 2003..

[11]  David A. Landgrebe,et al.  Hierarchical classifier design in high-dimensional numerous class cases , 1991, IEEE Trans. Geosci. Remote. Sens..