Piezoelectric coefficients and spontaneous polarization of ScAlN

We present a computational study of spontaneous polarization and piezoelectricity in Sc(x)Al(1-x)N alloys in the compositional range from x = 0 to x = 0.5, obtained in the context of density functional theory and the Berry-phase theory of electric polarization using large periodic supercells. We report composition-dependent values of piezoelectric coefficients e(ij), piezoelectric moduli d(ij) and elastic constants C(ij). The theoretical findings are complemented with experimental measurement of e33 for a series of sputtered ScAlN films carried out with a piezoelectric resonator. The rapid increase with Sc content of the piezoelectric response reported in previous studies is confirmed for the available data. A detailed description of the full methodology required to calculate the piezoelectric properties of ScAlN, with application to other complex alloys, is presented. In particular, we find that the large amount of internal strain present in ScAlN and its intricate relation with electric polarization make configurational sampling and the use of large supercells at different compositions necessary in order to accurately derive the piezoelectric response of the material.

[1]  Maher Moakher,et al.  The Closest Elastic Tensor of Arbitrary Symmetry to an Elasticity Tensor of Lower Symmetry , 2006, cond-mat/0608311.

[2]  Paul Muralt,et al.  Piezoelectric Al1−xScxN thin films: A semiconductor compatible solution for mechanical energy harvesting and sensors , 2013 .

[3]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[4]  G. Wingqvist,et al.  Origin of the anomalous piezoelectric response in wurtzite Sc(x)Al(1-x)N alloys. , 2010, Physical review letters.

[5]  Yan Zhang,et al.  Dislocation reduction in gallium nitride films using scandium nitride interlayers , 2007 .

[6]  E. O’Reilly,et al.  Comparison of stress and total energy methods for calculation of elastic properties of semiconductors , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Ferreira,et al.  Electronic properties of random alloys: Special quasirandom structures. , 1990, Physical review. B, Condensed matter.

[8]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[9]  Paul Muralt,et al.  Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films , 2012 .

[10]  Vincenzo Fiorentini,et al.  Nonlinear macroscopic polarization in III-V nitride alloys , 2001 .

[11]  Paul Muralt,et al.  Measurement of the effective transverse piezoelectric coefficient e31,f of AlN and Pb(Zrx,Ti1−x)O3 thin films , 1999 .

[12]  C. Humphreys,et al.  Structural properties of wurtzitelike ScGaN films grown by NH3-molecular beam epitaxy , 2009, Journal of Applied Physics.

[13]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[14]  M. Akiyama,et al.  Piezoelectric properties of ScAlN thin films for piezo-MEMS devices , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[15]  M. Craford,et al.  Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting , 2007, Journal of Display Technology.

[16]  P. Dobson,et al.  Physical Properties of Crystals – Their Representation by Tensors and Matrices , 1985 .

[17]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[18]  E. O’Reilly,et al.  Hybrid functional study of the elastic and structural properties of wurtzite and zinc-blende group-III nitrides , 2012 .

[19]  B. Terreault,et al.  An accurate and sensitive method for the determination of the depth distribution of light elements in heavy materials , 1976 .

[20]  Discussion, Summary, and Conclusions , 2016 .

[21]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[22]  A. Teshigahara,et al.  Preparation of scandium aluminum nitride thin films by using scandium aluminum alloy sputtering target and design of experiments , 2010 .

[23]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[24]  M. Ángel,et al.  Theory of elasticity and electric polarization effects in the group-III nitrides , 2013 .

[25]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .

[26]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[27]  Eoin P. O'Reilly,et al.  Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides , 2013, 1309.3309.

[28]  R. French,et al.  Vibrational Spectroscopy of Aluminum Nitride , 1993 .

[29]  M. Scheffler,et al.  Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN , 2009 .

[30]  D. Chadi,et al.  Special points for Brillouin-zone integrations , 1977 .

[31]  U. Schmid,et al.  Circular test structure for the determination of piezoelectric constants of ScxAl1−xN thin films applying Laser Doppler Vibrometry and FEM simulations☆ , 2015, Sensors and actuators. A, Physical.

[32]  J. Keinonen,et al.  Comparison of TOF-ERDA and nuclear resonance reaction techniques for range profile measurements of keV energy implants , 1996 .

[33]  David Vanderbilt Berry-phase theory of proper piezoelectric response , 1999 .

[34]  Wai Yuen Fu,et al.  Elastic constants and critical thicknesses of ScGaN and ScAlN , 2013 .

[35]  Igor A. Abrikosov,et al.  Ab initio elastic tensor of cubic Ti 0.5 Al 0.5 N alloys: Dependence of elastic constants on size and shape of the supercell model and their convergence , 2012 .

[36]  Oliver Ambacher,et al.  Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures , 2002 .

[37]  F. Bernardini,et al.  Accurate calculation of polarization-related quantities in semiconductors , 2001 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  E. Schubert Solid-State Lighting , 2004 .

[40]  David Vanderbilt,et al.  Theory of Polarization: A Modern Approach , 2007 .

[41]  A. Teshigahara,et al.  Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films , 2009 .

[42]  S. Dijken,et al.  Influence of the seed layer on structural and electro-acoustic properties of sputter-deposited AlN resonators , 2009 .

[43]  Nobuaki Kawahara,et al.  Enhancement of Piezoelectric Response in Scandium Aluminum Nitride Alloy Thin Films Prepared by Dual Reactive Cosputtering , 2009, Advanced materials.

[44]  K. Mizohata Progress in Elastic Recoil Detection Analysis , 2012 .

[45]  C. Humphreys Solid-State Lighting , 2008 .

[46]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[47]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[48]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[49]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[50]  Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides , 2013, 1303.3745.

[51]  Steven Mahon,et al.  Bulk Acoustic Wave Devices - Why, How, and Where They are Going , 2007 .

[52]  M. Dubois Measurements of the effective transe piezoelectric coefficient e_ of AlN and Pb(Zr_x,Ti_ )O_3 thin films , 1999 .

[53]  Peter E. Bl Projector-Augmented Wave Method: An introduction , 2003 .

[54]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[55]  Siyuan Zhang,et al.  ScGaN and ScAlN: emerging nitride materials , 2014 .

[56]  Jean-Marc Triscone,et al.  Physics of ferroelectrics : a modern perspective , 2007 .