Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4

The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer.

[1]  Ting-Fang Wang,et al.  Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis , 2009, The EMBO journal.

[2]  A. Bax,et al.  Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. , 1998, Journal of magnetic resonance.

[3]  G. Wagner,et al.  Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. , 2000, Biochemistry.

[4]  R. Hay,et al.  SUMO: a history of modification. , 2005, Molecular cell.

[5]  M. Tatham,et al.  SUMO Chain-Induced Dimerization Activates RNF4 , 2014, Molecular cell.

[6]  Ziming Zhang,et al.  Small Ubiquitin-like Modifier (SUMO) Recognition of a SUMO Binding Motif , 2005, Journal of Biological Chemistry.

[7]  Mary B. Kroetz,et al.  The Yeast Hex3·Slx8 Heterodimer Is a Ubiquitin Ligase Stimulated by Substrate Sumoylation* , 2007, Journal of Biological Chemistry.

[8]  E. Zuiderweg,et al.  Improvement of duty-cycle heating compensation in NMR spin relaxation experiments. , 2005, Journal of magnetic resonance.

[9]  M. Mann,et al.  In Vivo Identification of Human Small Ubiquitin-like Modifier Polymerization Sites by High Accuracy Mass Spectrometry and an in Vitro to in Vivo Strategy*S , 2008, Molecular & Cellular Proteomics.

[10]  Janet Rossant,et al.  Annual review of cell and developmental biology. , 2007 .

[11]  Zhijian J. Chen,et al.  Activation of the IκB Kinase Complex by TRAF6 Requires a Dimeric Ubiquitin-Conjugating Enzyme Complex and a Unique Polyubiquitin Chain , 2000, Cell.

[12]  M. Hochstrasser,et al.  Modification of proteins by ubiquitin and ubiquitin-like proteins. , 2006, Annual review of cell and developmental biology.

[13]  M. Tatham,et al.  Polymeric Chains of SUMO-2 and SUMO-3 Are Conjugated to Protein Substrates by SAE1/SAE2 and Ubc9* , 2001, The Journal of Biological Chemistry.

[14]  P. Young,et al.  Structure of S5a bound to monoubiquitin provides a model for polyubiquitin recognition. , 2005, Journal of molecular biology.

[15]  Aydin Haririnia,et al.  Solution Conformation of Lys63-linked Di-ubiquitin Chain Provides Clues to Functional Diversity of Polyubiquitin Signaling* , 2004, Journal of Biological Chemistry.

[16]  T. Hunter,et al.  Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. , 2007, Nature Reviews Molecular Cell Biology.

[17]  Martin Rechsteiner,et al.  Recognition of the polyubiquitin proteolytic signal , 2000, The EMBO journal.

[18]  Ad Bax,et al.  Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR , 2000 .

[19]  James H. Naismith,et al.  Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis , 2012, Nature.

[20]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[21]  M. Matunis,et al.  SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. , 2008, Molecules and Cells.

[22]  T. Hunter,et al.  Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins , 2007 .

[23]  C. W. Liew,et al.  RING domain dimerization is essential for RNF4 function. , 2010, The Biochemical journal.

[24]  S. C. Panchal,et al.  Improved 3D triple resonance experiments, HNN and HN(C)N, for HN and 15N sequential correlations in (13C, 15N) labeled proteins: Application to unfolded proteins , 2001, Journal of biomolecular NMR.

[25]  David Reverter,et al.  Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex , 2005, Nature.

[26]  Aydin Haririnia,et al.  Structure of the s5a:k48-linked diubiquitin complex and its interactions with rpn13. , 2009, Molecular cell.

[27]  Michael Nilges,et al.  ARIA2: Automated NOE assignment and data integration in NMR structure calculation , 2007, Bioinform..

[28]  Joshua D. Schnell,et al.  Non-traditional Functions of Ubiquitin and Ubiquitin-binding Proteins* , 2003, Journal of Biological Chemistry.

[29]  D. Soldati-Favre,et al.  Galactose Recognition by the Apicomplexan Parasite Toxoplasma gondii* , 2012, The Journal of Biological Chemistry.

[30]  S. Tzeng,et al.  NMR studies of large protein systems. , 2012, Methods in molecular biology.

[31]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[32]  T. A. Wilkinson,et al.  Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Naismith,et al.  Mechanism of ubiquitylation by dimeric RING ligase RNF4 , 2011, Nature Structural &Molecular Biology.

[34]  I. Matic,et al.  Purification and identification of endogenous polySUMO conjugates , 2011, EMBO reports.

[35]  Chia-Hui Yeh,et al.  SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. , 2006, Genes & development.

[36]  Wen-Chen Huang,et al.  Crystal structures of the human SUMO-2 protein at 1.6 A and 1.2 A resolution: implication on the functional differences of SUMO proteins. , 2004, European journal of biochemistry.

[37]  Junchao Xia,et al.  NMR relaxation in proteins with fast internal motions and slow conformational exchange: model-free framework and Markov state simulations. , 2013, The journal of physical chemistry. B.

[38]  T. Hunter,et al.  Poly-Small Ubiquitin-like Modifier (PolySUMO)-binding Proteins Identified through a String Search* , 2012, The Journal of Biological Chemistry.

[39]  Ivan Dikic,et al.  Specification of SUMO1- and SUMO2-interacting Motifs* , 2006, Journal of Biological Chemistry.

[40]  John A Tainer,et al.  SUMO‐targeted ubiquitin ligases in genome stability , 2007, The EMBO journal.

[41]  Oliver Kerscher,et al.  SUMO junction—what's your function? , 2007, EMBO reports.

[42]  R. Hay,et al.  SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting* , 2001, The Journal of Biological Chemistry.

[43]  T. Ikegami,et al.  Structure of the Small Ubiquitin-like Modifier (SUMO)-interacting Motif of MBD1-containing Chromatin-associated Factor 1 Bound to SUMO-3* , 2008, Journal of Biological Chemistry.

[44]  I. Callebaut,et al.  End‐joining inhibition at telomeres requires the translocase and polySUMO‐dependent ubiquitin ligase Uls1 , 2013, The EMBO journal.

[45]  H. Ulrich The fast-growing business of SUMO chains. , 2008, Molecular cell.

[46]  M. Tatham,et al.  RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation , 2008, Nature Cell Biology.

[47]  Alexandre M. J. J. Bonvin,et al.  Characterizing the N- and C-terminal Small Ubiquitin-like Modifier (SUMO)-interacting Motifs of the Scaffold Protein DAXX* , 2011, The Journal of Biological Chemistry.

[48]  Cynthia Wolberger,et al.  Crystal structure and solution NMR studies of Lys48-linked tetraubiquitin at neutral pH. , 2007, Journal of molecular biology.

[49]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.

[50]  Linda Hicke,et al.  Ubiquitin-binding domains , 2005, Nature Reviews Molecular Cell Biology.

[51]  S. Li,et al.  Insights into High Affinity Small Ubiquitin-like Modifier (SUMO) Recognition by SUMO-interacting Motifs (SIMs) Revealed by a Combination of NMR and Peptide Array Analysis* , 2011, The Journal of Biological Chemistry.

[52]  D. Fushman,et al.  Polyubiquitin chains: polymeric protein signals. , 2004, Current opinion in chemical biology.

[53]  F. Melchior,et al.  A Small Ubiquitin-Related Polypeptide Involved in Targeting RanGAP1 to Nuclear Pore Complex Protein RanBP2 , 1997, Cell.

[54]  K. Hofmann,et al.  Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO , 2013, The Biochemical journal.

[55]  Erica S. Johnson,et al.  Protein modification by SUMO. , 2004, Annual review of biochemistry.

[56]  Chiou-Hong Lin,et al.  Structural and functional roles of Daxx SIM phosphorylation in SUMO paralog-selective binding and apoptosis modulation. , 2011, Molecular cell.

[57]  L. Mueller,et al.  Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions , 1998, Nature Structural Biology.