Nonpathological Lyapunov functions and discontinuous Carathéodory systems

Differential equations with discontinuous right-hand side and solutions intended in Caratheodory sense are considered. For these equations, sufficient conditions which guarantee both Lyapunov stability and asymptotic stability in terms of nonsmooth Lyapunov functions are given. An invariance principle is also proven.

[1]  H. Sussmann Subanalytic sets and feedback control , 1979 .

[2]  A. Zygmund Measure and integration , 1961 .

[3]  Seung-Jean Kim,et al.  Existence of Carathe/spl acute/odory solutions in nonlinear systems with discontinuous switching feedback controllers , 2004, IEEE Transactions on Automatic Control.

[4]  F. Clarke,et al.  Nonlinear Analysis, Differential Equations and Control , 1999 .

[5]  Ludovic Rifford,et al.  Singularities of viscosity solutions and the stabilization problem in the plane , 2003 .

[6]  A. Bressan Singularities of stabilizing feedbacks , 1998 .

[7]  Yu. S. Ledyaev,et al.  Asymptotic controllability implies feedback stabilization , 1997, IEEE Trans. Autom. Control..

[8]  Ludovic Rifford,et al.  Semiconcave Control-Lyapunov Functions and Stabilizing Feedbacks , 2002, SIAM J. Control. Optim..

[9]  Z. Artstein Stabilization with relaxed controls , 1983 .

[10]  Seung-Jean Kim,et al.  On the existence of Caratheodory solutions in mechanical systems with friction , 1999, IEEE Trans. Autom. Control..

[11]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[12]  A. Bacciotti,et al.  Liapunov functions and stability in control theory , 2001 .

[13]  E. Ryan An Integral Invariance Principle for Differential Inclusions with Applications in Adaptive Control , 1998 .

[14]  B. Paden,et al.  Lyapunov stability theory of nonsmooth systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[15]  Alfredo Pucci Sistemi di equazioni differenziali con secondo membro discontinuo rispetto all'incognita , 1971 .

[16]  A. Bacciotti,et al.  Nonsmooth optimal regulation and discontinuous stabilization , 2003 .

[17]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[18]  R. W. Brockett,et al.  Asymptotic stability and feedback stabilization , 1982 .

[19]  Eduardo Sontag Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.

[20]  Alberto Bressan,et al.  Unique solutions for a class of discontinuous differential equations , 1988 .

[21]  P. Cannarsa,et al.  Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control , 2004 .

[22]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[23]  A. Bacciotti,et al.  Stability and Stabilization of Discontinuous Systems and Nonsmooth Lyapunov Functions , 1999 .

[24]  F. Ancona,et al.  Stability rates for patchy vector fields , 2001, math/0111109.

[25]  Ludovic Rifford,et al.  On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients , 2001 .

[26]  Fabio Ancona,et al.  Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization , 2002, SIAM J. Control. Optim..

[27]  Francesca Maria Ceragioli,et al.  Discontinuous ordinary differential equations and stabilization , 2000 .

[28]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[29]  F. Ancona,et al.  Patchy Vector Fields and Asymptotic Stabilization , 1999 .

[30]  Jean-Pierre Aubin,et al.  Differential Inclusions and Viability Theory , 1982 .