Clumpy Galaxies in CANDELS. II. Physical Properties of UV-bright Clumps at 0.5 ≤ z < 3

Studying giant star-forming clumps in distant galaxies is important to understand galaxy formation and evolution. At present, however, observers and theorists have not reached a consensus on whether the observed “clumps” in distant galaxies are the same phenomenon that is seen in simulations. In this paper, as a step to establish a benchmark of direct comparisons between observations and theories, we publish a sample of clumps constructed to represent the commonly observed “clumps” in the literature. This sample contains 3193 clumps detected from 1270 galaxies at 0.5 ≤ z < 3.0 . The clumps are detected from rest-frame UV images, as described in our previous paper. Their physical properties (e.g., rest-frame color, stellar mass ( M * ), star formation rate (SFR), age, and dust extinction) are measured by fitting the spectral energy distribution (SED) to synthetic stellar population models. We carefully test the procedures of measuring clump properties, especially the method of subtracting background fluxes from the diffuse component of galaxies. With our fiducial background subtraction, we find a radial clump U − V color variation, where clumps close to galactic centers are redder than those in outskirts. The slope of the color gradient (clump color as a function of their galactocentric distance scaled by the semimajor axis of galaxies) changes with redshift and M * of the host galaxies: at a fixed M * , the slope becomes steeper toward low redshift, and at a fixed redshift, it becomes slightly steeper with M * . Based on our SED fitting, this observed color gradient can be explained by a combination of a negative age gradient, a negative E(B − V) gradient, and a positive specific SFR gradient of the clumps. We also find that the color gradients of clumps are steeper than those of intra-clump regions. Correspondingly, the radial gradients of the derived physical properties of clumps are different from those of the diffuse component or intra-clump regions.

[1]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: A major merger origin for the high fraction of galaxies at 2 < z < 6 with two bright clumps , 2017 .

[2]  J. Trump,et al.  CANDELS: Elevated Black Hole Growth in the Progenitors of Compact Quiescent Galaxies at z ∼ 2 , 2017, 1710.05921.

[3]  S. Faber,et al.  UVI colour gradients of 0.4 < z < 1.4 star-forming main-sequence galaxies in CANDELS: dust extinction and star formation profiles , 2017, 1705.05404.

[4]  A. Bolatto,et al.  Connecting Clump Sizes in Turbulent Disk Galaxies to Instability Theory , 2017, 1703.00458.

[5]  S. Ravindranath,et al.  Physical Properties of Sub-galactic Clumps at 0.5 ≤ Z ≤ 1.5 in the UVUDF , 2017, 1702.03038.

[6]  C. Carollo,et al.  Connection between Stellar Mass Distributions within Galaxies and Quenching Since z = 2 , 2017, 1702.02392.

[7]  L. Mayer,et al.  On the Stellar Masses of Giant Clumps in Distant Star-forming Galaxies , 2017, 1702.00055.

[8]  B. Elmegreen,et al.  Near-exponential surface densities as hydrostatic, non-equilibrium profiles in galaxy discs , 2016, 1609.08957.

[9]  D. Fisher,et al.  DYNAMO-HST survey: clumps in nearby massive turbulent discs and the effects of clump clustering on kiloparsec scale measurements of clumps , 2016, 1608.08241.

[10]  P. Hopkins,et al.  Giant clumps in the FIRE simulations: A case study of a massive high-redshift galaxy , 2016, 1603.03778.

[11]  Yicheng Guo,et al.  Giant clumps in simulated high-z Galaxies: properties, evolution and dependence on feedback , 2015, 1512.08791.

[12]  J. Trump,et al.  Structural and Star-forming Relations since z ∼ 3: Connecting Compact Star-forming and Quiescent Galaxies , 2015, 1509.00469.

[13]  U. A. D. Madrid,et al.  Nihao XIII: Clumpy discs or clumpy light in high-redshift galaxies? , 2016, 1612.05277.

[14]  J. Kneib,et al.  Molecular gas properties of a lensed star-forming galaxy at z 3.6: a case study , 2016, 1610.08065.

[15]  J. Larkin,et al.  IROCKS: SPATIALLY RESOLVED KINEMATICS OF z ∼ 1 STAR-FORMING GALAXIES , 2016, 1608.01676.

[16]  J. Trump,et al.  SUB-KILOPARSEC ALMA IMAGING OF COMPACT STAR-FORMING GALAXIES AT z ∼ 2.5: REVEALING THE FORMATION OF DENSE GALACTIC CORES IN THE PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2016, 1607.01011.

[17]  S. Faber,et al.  THE UV–OPTICAL COLOR GRADIENTS IN STAR-FORMING GALAXIES AT 0.5 < z < 1.5: ORIGINS AND LINK TO GALAXY ASSEMBLY , 2016, 1604.05780.

[18]  J. M'endez-Abreu,et al.  Starburst galaxies in the COSMOS field: clumpy star-formation at redshift 0 < z < 0.5 , 2016, 1604.01698.

[19]  R. Bender,et al.  Sizes, colour gradients and resolved stellar mass distributions for the massive cluster galaxies in XMMUJ2235-2557 at z = 1.39 , 2016, 1603.00468.

[20]  A. Dekel,et al.  Non-linear violent disc instability with high Toomre's Q in high-redshift clumpy disc galaxies , 2015, 1510.07695.

[21]  H. Rix,et al.  WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROM HST Hα MAPS OF 3200 GALAXIES ACROSS THE MAIN SEQUENCE AT 0.7 < z < 1.5 , 2015, 1507.03999.

[22]  Masami Ouchi,et al.  MORPHOLOGIES OF ∼190,000 GALAXIES AT z = 0–10 REVEALED WITH HST LEGACY DATA. II. EVOLUTION OF CLUMPY GALAXIES , 2015, 1511.07054.

[23]  B. Mobasher,et al.  NEBULAR AND STELLAR DUST EXTINCTION ACROSS THE DISK OF EMISSION-LINE GALAXIES ON KILOPARSEC SCALES , 2015 .

[24]  S. Wuyts,et al.  SPATIALLY RESOLVED DUST MAPS FROM BALMER DECREMENTS IN GALAXIES AT z ∼ 1.4 , 2015, 1511.04443.

[25]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF STELLAR MASS MEASUREMENT METHODS , 2015, 1505.01501.

[26]  University of Surrey,et al.  An extremely young massive clump forming by gravitational collapse in a primordial galaxy , 2015, Nature.

[27]  G. Zamorani,et al.  Evidence for mature bulges and an inside-out quenching phase 3 billion years after the Big Bang , 2015, Science.

[28]  A. M. Swinbank,et al.  Resolved spectroscopy of gravitationally lensed galaxies: global dynamics and star-forming clumps on ∼100 pc scales at 1 < z < 4 , 2015, 1503.07873.

[29]  C. Conselice,et al.  THE ROLE OF BULGE FORMATION IN THE HOMOGENIZATION OF STELLAR POPULATIONS AT Z ∼ 2 AS REVEALED BY INTERNAL COLOR DISPERSION IN CANDELS , 2015, 1503.00722.

[30]  U. Cambridge,et al.  A lower fragmentation mass scale in high-redshift galaxies and its implications on giant clumps: a systematic numerical study , 2014, 1412.3319.

[31]  G. Zamorani,et al.  THE SINS/zC-SINF SURVEY OF z ∼ 2 GALAXY KINEMATICS: REST-FRAME MORPHOLOGY, STRUCTURE, AND COLORS FROM NEAR-INFRARED HUBBLE SPACE TELESCOPE IMAGING , 2014, 1411.7034.

[32]  R. Teyssier,et al.  Modeling CO emission from hydrodynamic simulations of nearby spirals, starbursting mergers, and high-redshift galaxies , 2014, Astronomy &amp; Astrophysics.

[33]  I. M. Omcheva,et al.  WHERE STARS FORM: INSIDE-OUT GROWTH AND COHERENT STAR FORMATION FROM HST H α MAPS OF 2676 GALAXIES ACROSS THE MAIN SEQUENCE AT Z ∼ 1 , 2015 .

[34]  A. Fontana,et al.  STELLAR MASSES FROM THE CANDELS SURVEY: THE GOODS-SOUTH AND UDS FIELDS , 2014, 1412.5180.

[35]  S. Ravindranath,et al.  CLUMPY GALAXIES IN CANDELS. I. THE DEFINITION OF UV CLUMPS AND THE FRACTION OF CLUMPY GALAXIES AT 0.5 < z < 3 , 2014, 1410.7398.

[36]  H. Ferguson,et al.  KILOPARSEC-SCALE PROPERTIES OF EMISSION-LINE GALAXIES , 2014, 1409.4791.

[37]  J. Trump,et al.  NO MORE ACTIVE GALACTIC NUCLEI IN CLUMPY DISKS THAN IN SMOOTH GALAXIES AT z ∼ 2 IN CANDELS/3D-HST , 2014, 1407.7525.

[38]  G. Brammer,et al.  CONSTRAINING THE LOW-MASS SLOPE OF THE STAR FORMATION SEQUENCE AT 0.5 < z < 2.5 , 2014, 1407.1843.

[39]  D. Fisher,et al.  DYNAMO – II. Coupled stellar and ionized-gas kinematics in two low-redshift clumpy discs , 2014, 1405.6753.

[40]  Christopher E. Moody,et al.  Star formation and clumps in cosmological galaxy simulations with radiation pressure feedback , 2014, 1405.5266.

[41]  S. Wuyts,et al.  DENSE CORES IN GALAXIES OUT TO z = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS , 2014, 1404.4874.

[42]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[43]  O. Ilbert,et al.  EVOLUTION OF THE FRACTION OF CLUMPY GALAXIES AT 0.2 < z < 1.0 IN THE COSMOS FIELD , 2014, 1403.1496.

[44]  T. Saitoh,et al.  Properties of thick discs formed in clumpy galaxies , 2014, 1402.5986.

[45]  H. Ferguson,et al.  BULGE GROWTH AND QUENCHING SINCE z = 2.5 IN CANDELS/3D-HST , 2014, 1402.0866.

[46]  J. Rigby,et al.  A MAGNIFIED VIEW OF THE KINEMATICS AND MORPHOLOGY OF RCSGA 032727-132609: ZOOMING IN ON A MERGER AT z = 1.7 , 2013, 1312.1564.

[47]  P. Hopkins,et al.  Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation , 2013, 1311.2073.

[48]  Christopher E. Moody,et al.  The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival , 2013, 1311.0013.

[49]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[50]  M. Hayashi,et al.  THE NATURE OF Hα-SELECTED GALAXIES AT z > 2. II. CLUMPY GALAXIES AND COMPACT STAR-FORMING GALAXIES , 2013, 1311.4260.

[51]  B. Lundgren,et al.  A CANDELS–3D-HST SYNERGY: RESOLVED STAR FORMATION PATTERNS AT 0.7 < z < 1.5 , 2013, 1310.5702.

[52]  A. Fontana,et al.  A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.

[53]  D. Elbaz,et al.  THE LONG LIVES OF GIANT CLUMPS AND THE BIRTH OF OUTFLOWS IN GAS-RICH GALAXIES AT HIGH REDSHIFT , 2013, The Astrophysical Journal.

[54]  Kirpal Nandra,et al.  CANDELS MULTI-WAVELENGTH CATALOGS: SOURCE DETECTION AND PHOTOMETRY IN THE GOODS-SOUTH FIELD , 2013, 1308.4405.

[55]  F. Bournaud,et al.  Simulations of supermassive black hole growth in high-redshift disc galaxies , 2013, 1306.2954.

[56]  P. Hopkins,et al.  Accretion does not drive the turbulence in galactic discs , 2013, 1301.4500.

[57]  G. Illingworth,et al.  THE STELLAR MASS STRUCTURE OF MASSIVE GALAXIES FROM z = 0 TO z = 2.5: SURFACE DENSITY PROFILES AND HALF-MASS RADII , 2012, 1208.4363.

[58]  MORPHOLOGICAL EVOLUTION OF GALAXIES FROM ULTRADEEP HST WFC3 IMAGING: THE HUBBLE SEQUENCE AT Z , 2013 .

[59]  G. Zamorani,et al.  THE SINS/zC-SINF SURVEY of z ∼ 2 GALAXY KINEMATICS: OUTFLOW PROPERTIES , 2012, 1207.5897.

[60]  P. Saracco,et al.  Spatially resolved colours and stellar population properties in early-type galaxies at z ∼ 1.5 , 2012, 1207.2295.

[61]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[62]  J. Newman,et al.  SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES , 2012, 1203.2611.

[63]  P. Saracco,et al.  On the central stellar mass density and the inside-out growth of early-type galaxies , 2012, 1202.5903.

[64]  H. Ferguson,et al.  MULTI-WAVELENGTH VIEW OF KILOPARSEC-SCALE CLUMPS IN STAR-FORMING GALAXIES AT z ∼ 2 , 2011, 1110.3800.

[65]  D. Elbaz,et al.  AN OBSERVED LINK BETWEEN ACTIVE GALACTIC NUCLEI AND VIOLENT DISK INSTABILITIES IN HIGH-REDSHIFT GALAXIES , 2011, 1111.0987.

[66]  Ssc,et al.  REST-FRAME UV–OPTICALLY SELECTED GALAXIES AT 2.3 ≲ z ≲ 3.5: SEARCHING FOR DUSTY STAR-FORMING AND PASSIVELY EVOLVING GALAXIES , 2011, 1110.3801.

[67]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: high-resolution kinematics of luminous star-forming galaxies , 2011, 1107.3338.

[68]  R. Teyssier,et al.  BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS , 2011, 1107.1483.

[69]  A. Dekel,et al.  Rotational support of giant clumps in high-z disc galaxies , 2011, 1106.5587.

[70]  Garth D. Illingworth,et al.  MORPHOLOGICAL EVOLUTION OF GALAXIES FROM ULTRA-DEEP HUBBLE SPACE TELESCOPE WIDE FIELD CAMERA 3 IMAGING: THE HUBBLE SEQUENCE AT z ∼ 2 , 2011, 1106.1641.

[71]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[72]  R. Genzel,et al.  CONSTRAINTS ON THE ASSEMBLY AND DYNAMICS OF GALAXIES. II. PROPERTIES OF KILOPARSEC-SCALE CLUMPS IN REST-FRAME OPTICAL EMISSION OF z ∼ 2 STAR-FORMING GALAXIES , 2011, 1104.0248.

[73]  A. Fontana,et al.  COLOR AND STELLAR POPULATION GRADIENTS IN PASSIVELY EVOLVING GALAXIES AT z ∼ 2 FROM HST/WFC3 DEEP IMAGING IN THE HUBBLE ULTRA DEEP FIELD , 2011, 1101.0843.

[74]  G. Zamorani,et al.  THE SINS SURVEY OF z ∼ 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS , 2010, 1011.5360.

[75]  P. Saracco,et al.  Colour gradients in normal and compact early-type galaxies at 1 < z < 2 , 2010, 1011.2427.

[76]  Andreas Burkert,et al.  SHORT-LIVED STAR-FORMING GIANT CLUMPS IN COSMOLOGICAL SIMULATIONS OF z ≈ 2 DISKS , 2010, 1011.0433.

[77]  V. Cardone,et al.  Colour and stellar population gradients in galaxies: correlation with mass , 2010, Monthly Notices of the Royal Astronomical Society.

[78]  Harvard,et al.  Intense star formation within resolved compact regions in a galaxy at z = 2.3 , 2010, Nature.

[79]  M. Puech Clumpy galaxies at z ∼ 0.6: kinematics, stability and comparison with analogues at other redshifts , 2010, 1003.3116.

[80]  A. Dekel,et al.  Survival of star-forming giant clumps in high-redshift galaxies , 2010, 1001.0765.

[81]  Johan Richard,et al.  Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z ~ 2-3 galaxies , 2009, 0910.4488.

[82]  A. Dekel,et al.  High-redshift clumpy discs and bulges in cosmological simulations , 2009, 0907.3271.

[83]  M. Martig,et al.  THE THICK DISKS OF SPIRAL GALAXIES AS RELICS FROM GAS-RICH, TURBULENT, CLUMPY DISKS AT HIGH REDSHIFT , 2009, 0910.3677.

[84]  E. Quataert,et al.  THE DISRUPTION OF GIANT MOLECULAR CLOUDS BY RADIATION PRESSURE & THE EFFICIENCY OF STAR FORMATION IN GALAXIES , 2009, 0906.5358.

[85]  B. Elmegreen,et al.  CLUMPY GALAXIES IN GOODS AND GEMS: MASSIVE ANALOGS OF LOCAL DWARF IRREGULARS , 2009, 0906.2660.

[86]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[87]  Daniel Ceverino,et al.  FORMATION OF MASSIVE GALAXIES AT HIGH REDSHIFT: COLD STREAMS, CLUMPY DISKS, AND COMPACT SPHEROIDS , 2009, 0901.2458.

[88]  B. Neichel,et al.  A forming disk at z ~ 0.6: collapse of a gaseous disk or major merger remnant? , 2008, 0811.3893.

[89]  B. Elmegreen,et al.  BULGE AND CLUMP EVOLUTION IN HUBBLE ULTRA DEEP FIELD CLUMP CLUSTERS, CHAINS AND SPIRAL GALAXIES , 2008, 0810.5404.

[90]  A. Klypin,et al.  THE ROLE OF STELLAR FEEDBACK IN THE FORMATION OF GALAXIES , 2007, 0712.3285.

[91]  Laboratoire AIM,et al.  Bulge Formation by the Coalescence of Giant Clumps in Primordial Disk Galaxies , 2008, 0903.1937.

[92]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[93]  D. Elbaz,et al.  Observations and modeling of a clumpy galaxy at z = 1.6 - Spectroscopic clues to the origin and evolution of chain galaxies , 2008, 0803.3831.

[94]  B. G. Elmegreen,et al.  Rapid Formation of Exponential Disks and Bulges at High Redshift from the Dynamical Evolution of Clump-Cluster and Chain Galaxies , 2007, 0708.0306.

[95]  E. McGrath,et al.  Morphologies and Color Gradients of Luminous Evolved Galaxies at z ~ 1.5 , 2007, 0707.1050.

[96]  S. Ravindranath,et al.  Resolved Galaxies in the Hubble Ultra Deep Field: Star Formation in Disks at High Redshift , 2007, astro-ph/0701121.

[97]  H. Rix,et al.  The stellar masses of 25 000 galaxies at 0.2 ≤ z ≤ 1.0 estimated by the COMBO-17 survey , 2006 .

[98]  B. Elmegreen,et al.  Stellar Populations in 10 Clump-Cluster Galaxies of the Hubble Ultra Deep Field , 2005, astro-ph/0504032.

[99]  S. Ravindranath,et al.  A MULTIWAVELENGTH STUDY OF TADPOLE GALAXIES IN THE HUBBLE ULTRA DEEP FIELD , 2004, astro-ph/0511423.

[100]  R. Bouwens,et al.  Internal Color Properties of Resolved Spheroids in the Deep Hubble Space Telescope Advanced Camera for Surveys Field of UGC 10214 , 2004 .

[101]  O. Gerhard,et al.  Subgalactic Clumps at High Redshift: A Fragmentation Origin? , 2004, astro-ph/0406135.

[102]  R. Bouwens,et al.  Internal Color Properties of Resolved Spheroids in the Deep HST/ACS field of UGC 10214 , 2004, astro-ph/0405326.

[103]  B. Elmegreen,et al.  Chain Galaxies in the Tadpole ACS Field , 2004, astro-ph/0401364.

[104]  B. Elmegreen,et al.  Chain Galaxies in the Tadpole Advanced Camera for Surveys Field , 2004, astro-ph/0402477.

[105]  S. Ravindranath,et al.  Observing the Formation of the Hubble Sequence in the Great Observatories Origins Deep Survey , 2003, astro-ph/0309039.

[106]  R. Janeiro,et al.  Gas physics, disk fragmentation, and bulge formation in young galaxies , 2003, astro-ph/0312139.

[107]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[108]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[109]  A. Kravtsov On the Origin of the Global Schmidt Law of Star Formation , 2003, astro-ph/0303240.

[110]  C. Conselice The Relationship between Stellar Light Distributions of Galaxies and Their Formation Histories , 2003, astro-ph/0303065.

[111]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[112]  M. Noguchi Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[113]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[114]  C. Leitherer,et al.  Dust and Recent Star Formation in the Core of NGC5253 , 1997, astro-ph/9708056.

[115]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[116]  B. Santiago,et al.  A Morphological Catalog of Galaxies in the Hubble Deep Field , 1996, astro-ph/9604161.

[117]  L. Cowie,et al.  Faintest galaxy morphologies from hst wfpc2 imaging of the hawaii survey fields , 1995, astro-ph/9507055.

[118]  Piero Madau,et al.  Radiative transfer in a clumpy universe: The colors of high-redshift galaxies , 1995 .

[119]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[120]  J. B. Oke Absolute spectral energy distributions for white dwarfs , 1974 .