Re-entrant glass transition in a colloid-polymer mixture with depletion attractions.

Performing light scattering experiments we show that introducing short-ranged attraction to a colloid suspension of nearly hard spheres by addition of a free polymer produces new glass-transition phenomena. We observe a dramatic acceleration of the density fluctuations amounting to the melting of a colloidal glass. Upon increasing the strength of the attractions the system freezes into another nonergodic state sharing some qualitative features with gel states occurring at lower colloid packing fractions. This re-entrant glass transition is in qualitative agreement with recent theoretical predictions.