An SVD-free Pareto curve approach to rank minimization

Recent SVD-free matrix factorization formulations have enabled rank optimization for extremely large-scale systems (millions of rows and columns). In this paper, we consider rank-regularized formulations that only require a target data-fitting error level, and propose an algorithm for the corresponding problem. We illustrate the advantages of the new approach using the Netflix problem, and use it to obtain high quality results for seismic trace interpolation, a key application in exploration geophysics. We show that factor rank can be easily adjusted as the inversion proceeds, and propose a weighted extension that allows known subspace information to improve the results of matrix completion formulations. Using these methods, we obtain high-quality reconstructions for large scale seismic interpolation problems with real data.

[1]  Ruslan Salakhutdinov,et al.  Practical Large-Scale Optimization for Max-norm Regularization , 2010, NIPS.

[2]  Mauricio D. Sacchi,et al.  Interpolation and extrapolation using a high-resolution discrete Fourier transform , 1998, IEEE Trans. Signal Process..

[3]  Rabab Kreidieh Ward,et al.  Color image desaturation using sparse reconstruction , 2010, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[4]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[5]  Felix J. Herrmann,et al.  Non-parametric seismic data recovery with curvelet frames , 2008 .

[6]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[7]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[8]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[9]  M. Sacchi,et al.  Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis , 2011 .

[10]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[11]  Hassan Mansour,et al.  Improved wavefield reconstruction from randomized sampling via weighted one-norm minimization , 2013 .

[12]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[13]  Michael P. Friedlander,et al.  Variational Properties of Value Functions , 2012, SIAM J. Optim..

[14]  Michael Elad,et al.  Sparse Representation for Color Image Restoration , 2008, IEEE Transactions on Image Processing.

[15]  Hassan Mansour,et al.  Recovering Compressively Sampled Signals Using Partial Support Information , 2010, IEEE Transactions on Information Theory.

[16]  Luc De Raedt,et al.  Proceedings of the 22nd international conference on Machine learning , 2005 .

[17]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[18]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[19]  Christopher Ré,et al.  Parallel stochastic gradient algorithms for large-scale matrix completion , 2013, Mathematical Programming Computation.

[20]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[21]  Michael P. Friedlander,et al.  Sparse Optimization with Least-Squares Constraints , 2011, SIAM J. Optim..

[22]  Max Deffenbaugh,et al.  Efficient seismic forward modeling using simultaneous random sources and sparsity , 2010 .