An analysis of numerical convergence in discrete velocity gas dynamics for internal flows

[1]  David Goldstein,et al.  A low noise discrete velocity method for the Boltzmann equation with quantized rotational and vibrational energy , 2018, J. Comput. Phys..

[2]  D. Goldstein,et al.  Lid-driven cavity flow using a discrete velocity method for solving the Boltzmann equation , 2016 .

[3]  Peter Clarke A discrete velocity method for the Boltzmann equation with internal energy and stochastic variance reduction , 2015 .

[4]  D. Goldstein,et al.  Discrete velocity computations with stochastic variance reduction of the Boltzmann equation for gas mixtures , 2014 .

[5]  Kun Xu,et al.  A Unified Gas-Kinetic Scheme for Continuum and Rarefied Flows III: Microflow Simulations , 2013 .

[6]  David B. Goldstein,et al.  Variance Reduction For A Discrete Velocity Gas , 2011 .

[7]  D. B. Goldstein,et al.  Monte Carlo solution of the Boltzmann equation via a discrete velocity model , 2011, J. Comput. Phys..

[8]  David R. Emerson,et al.  Investigation of Heat and Mass Transfer in a Lid-Driven Cavity Under Nonequilibrium Flow Conditions , 2010 .

[9]  J. Ghazanfarian,et al.  Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  A. Morris,et al.  Investigation of a discrete velocity Monte Carlo Boltzmann equation , 2009 .

[11]  David B. Goldstein,et al.  Improvement of a Discrete Velocity Boltzmann Equation Solver With Arbitrary Post‐Collision Velocities , 2009 .

[12]  Ching-Long Lin,et al.  Lattice Boltzmann study of three-dimensional gas microchannel flows , 2006 .

[13]  Mohamed Gad-el-Hak,et al.  MEMS : Design and Fabrication , 2005 .

[14]  David R Emerson,et al.  Lattice Boltzmann simulation of rarefied gas flows in microchannels. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  M. Meyyappan,et al.  Modeling gas flow through microchannels and nanopores , 2003 .

[16]  Yoshio Sone,et al.  Kinetic Theory and Fluid Dynamics , 2002 .

[17]  I. Karlin,et al.  Kinetic boundary conditions in the lattice Boltzmann method. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  L. Petzold,et al.  Examination of the Slip Boundary Condition by µ-PIV and Lattice Boltzmann Simulations , 2002 .

[19]  G. Karniadakis,et al.  Microflows and Nanoflows: Fundamentals and Simulation , 2001 .

[20]  François Golse,et al.  A rarefied gas flow caused by a discontinuous wall temperature , 2001 .

[21]  G. Chen Shock capturing and related numerical methods in computational fluid dynamics. , 2001 .

[22]  Nicolas G. Hadjiconstantinou,et al.  Analysis of dis-cretization in the direct simulation Monte Carlo , 2000 .

[23]  Stefan T. Thynell,et al.  Discrete-ordinates method in radiative heat transfer , 1998 .

[24]  Shiyi Chen,et al.  Lattice-Boltzmann Simulations of Fluid Flows in MEMS , 1998, comp-gas/9806001.

[25]  Andrzej Palczewski,et al.  Existence, Stability, and Convergence of Solutions of Discrete Velocity Models to the Boltzmann Equation , 1998 .

[26]  Andrzej Palczewski,et al.  A Consistency Result for a Discrete-Velocity Model of the Boltzmann Equation , 1997 .

[27]  G. Bird Molecular Gas Dynamics and the Direct Simulation of Gas Flows , 1994 .

[28]  Zhiqiang Tan,et al.  The Δ-ε Method for the Boltzmann Equation , 1994 .

[29]  Bradford Sturtevant,et al.  Numerical study of discrete‐velocity gases , 1990 .

[30]  D. Goldstein Investigations of a discrete velocity gas , 1990 .

[31]  K. Burrell Effect of particle and heat sources on impurity transport in tokamak plasmas , 1976 .

[32]  Elmer E Lewis,et al.  Ray-effect mitigation in discrete ordinate-like angular finite element approximations in neutron transport , 1975 .

[33]  J. Broadwell,et al.  Shock Structure in a Simple Discrete Velocity Gas , 1964 .