Computational study on the reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces

This study investigates the adsorption and reactions of H2O2 on TiO2 anatase (101) and rutile (110) surfaces by first‐principles calculations based on the density functional theory in conjunction with the projected augmented wave approach, using PW91, PBE, and revPBE functionals. Adsorption mechanisms of H2O2 and its fragments on both surfaces are analyzed. It is found that H2O2, H2O, and HO preferentially adsorb at the Ti5c site, meanwhile HOO, O, and H preferentially adsorb at the (O2c)(Ti5c), (Ti5c)2, and O2c sites, respectively. Potential energy profiles of the adsorption processes on both surfaces have been constructed using the nudged elastic band method. The two restructured surfaces, the 1/3 ML oxygen covered TiO2 and the hydroxylated TiO2, are produced with the H2O2 dehydration and deoxidation, respectively. The formation of main products, H2O(g) and the 1/3 ML oxygen covered TiO2 surface, is exothermic by 2.8 and 5.0 kcal/mol, requiring energy barriers of 0.8 and 1.1 kcal/mol on the rutile (110) and anatase (101) surface, respectively. The rate constants for the H2O2 dehydration processes have been predicted to be 6.65 × 10−27 T4.38 exp(−0.14 kcal mol−1/RT) and 3.18 × 10−23 T5.60 exp(−2.92 kcal mol−1/RT) respectively, in units of cm3 molecule−1 s−1. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011.

[1]  Joop Schoonman,et al.  Aerosol Synthesis of Anatase Titanium Dioxide Nanoparticles for Hybrid Solar Cells , 2003 .

[2]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[3]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[4]  U. Diebold,et al.  Experimental Investigation of the Interaction of Water and Methanol with Anatase−TiO2(101) , 2003 .

[5]  R. Marcus,et al.  On the Statistical Theory of Unimolecular Processes , 2007 .

[6]  Y. Nosaka,et al.  Photocatalytic reactivity for O2•- and OH• radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition , 2007 .

[7]  G. Mattioli,et al.  Reaction intermediates in the photoreduction of oxygen molecules at the (101) TiO2 (anatase) surface. , 2006, Journal of the American Chemical Society.

[8]  G. Hwang,et al.  Dynamics of oxygen species on reduced TiO 2 ( 110 ) rutile , 2004 .

[9]  Kai Zhu,et al.  Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. , 2006, The journal of physical chemistry. B.

[10]  Carlo Adamo,et al.  Structural and Electronic Properties of Selected Rutile and Anatase TiO2 Surfaces:  An ab Initio Investigation. , 2008, Journal of chemical theory and computation.

[11]  J. Nørskov,et al.  Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). , 2001, Physical review letters.

[12]  A. Selloni,et al.  O2 interaction and reactivity on a model hydroxylated rutile(110) surface. , 2005, The journal of physical chemistry. B.

[13]  R. Marcus,et al.  RRKM reaction rate theory for transition states of any looseness , 1984 .

[14]  Ramamoorthy,et al.  First-principles calculations of the energetics of stoichiometric TiO2 surfaces. , 1994, Physical review. B, Condensed matter.

[15]  R. Restori,et al.  Charge density in rutile, TiO2 , 1987 .

[16]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[17]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[18]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[19]  P. Raghunath,et al.  Adsorption configurations and reactions of boric acid on a TiO2 anatase (101) surface , 2008 .

[20]  Annabella Selloni,et al.  Structure and energetics of stoichiometric TiO 2 anatase surfaces , 2001 .

[21]  J. Banfield,et al.  UNDERSTANDING POLYMORPHIC PHASE TRANSFORMATION BEHAVIOR DURING GROWTH OF NANOCRYSTALLINE AGGREGATES: INSIGHTS FROM TIO2 , 2000 .

[22]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[23]  Hsin‐Tsung Chen,et al.  Adsorption Configurations and Reactions of Nitric Acid on TiO2 Rutile (110) and Anatase (101) surfaces , 2009 .

[24]  Horst Weller,et al.  Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors , 1994 .

[25]  Hsin‐Tsung Chen,et al.  Density Functional Theory Study of the Adsorption and Reaction of H2S on TiO2 Rutile (110) and Anatase (101) Surfaces , 2009 .

[26]  Charles T. Campbell,et al.  The interaction of H2O with a TiO2(110) surface , 1994 .

[27]  Y. Nosaka,et al.  Properties of O2.- and OH. formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions , 2002 .

[28]  A computational study of the mechanism for the C6H5+ CH2O reaction , 2000 .

[29]  M. Horn,et al.  Refinement of the structure of anatase at several temperatures , 1972 .

[30]  R. Marcus,et al.  Unimolecular reaction rate theory for transition states of any looseness. 3. Application to methyl radical recombination , 1986 .

[31]  G. Seifert,et al.  Structure, stability and electronic properties of TiO2 nanostructures , 2005 .

[32]  Changwen Hu,et al.  The effects of ambient gases on the surface resistance of polyoxometalate/TiO2 film , 2004 .

[33]  Jinlong Yang,et al.  Wet Electrons at the H2O/TiO2(110) Surface , 2005, Science.

[34]  P. Balbuena,et al.  Adsorption and dissociation of H2O2 on Pt and Pt-alloy clusters and surfaces. , 2006, The journal of physical chemistry. B.

[35]  A. Navrotsky,et al.  Energetics of nanocrystalline TiO2 , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[36]  N. Itoh,et al.  All electron scalar relativistic calculations on adsorption of CO on Pt(1 1 1) with full-geometry optimization: a correct estimation for CO site-preference , 2004 .

[37]  G. Kroes,et al.  Theoretical study of adsorption of O((3)P) and H(2)O on the rutile TiO(2)(110) surface. , 2006, The journal of physical chemistry. B.

[38]  Jeffrey L. Blackburn,et al.  Electron Transfer Dynamics in Quantum Dot/Titanium Dioxide Composites Formed by in Situ Chemical Bath Deposition , 2003 .

[39]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[40]  B. C. Garrett,et al.  Variational Transition State Theory , 1980 .

[41]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[42]  A. López,et al.  Photochemical Decoloration of Remazol Brilliant Blue and Uniblue A in the Presence of Fe3+ and H2O2 , 1999 .

[43]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[44]  Jenghan Wang,et al.  Low-pressure organometallic chemical vapor deposition of indium nitride on titanium dioxide nanoparticles. , 2004, ChemPhysChem.

[45]  R. Marcus,et al.  Unimolecular reaction rate theory for transition states of partial looseness. II. Implementation and analysis with applications to NO2 and C2H6 dissociations , 1985 .

[46]  P. Lindan,et al.  A density functional theory study of the coadsorption of water and oxygen on TiO2(110). , 2004, The Journal of chemical physics.

[47]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  A. Mebel,et al.  Abinitio molecular orbital study of the HCO+O2 reaction: Direct versus indirect abstraction channels , 1996 .

[50]  D. Marx,et al.  Composition, structure, and stability of the rutile TiO 2 (110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption , 2009, 0902.0854.

[51]  Timothy Hughbanks,et al.  Structural-electronic relationships in inorganic solids: powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K , 1987 .

[52]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[53]  P. Raghunath,et al.  Adsorption Configurations and Decomposition Pathways of Boric Acid on TiO2 Rutile (110) Surface: A Computational Study , 2009 .

[54]  A. Quong,et al.  Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2(110). , 2004, Physical review letters.

[55]  Hannes Jonsson,et al.  Reversible work transition state theory: application to dissociative adsorption of hydrogen , 1995 .

[56]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[57]  C. Ni,et al.  Size dependence of thermal stability of TiO2 nanoparticles , 2004 .

[58]  Jincai Zhao,et al.  Mechanism of Photodecomposition of H2O2 on TiO2 Surfaces under Visible Light Irradiation , 2001 .

[59]  V. Batista,et al.  Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. , 2003, Journal of the American Chemical Society.

[60]  G. Benedek,et al.  Dynamics of Gas-Surface Interaction , 1982 .

[61]  G. Li,et al.  Synthesis of nanometer-sized TiO2 particles by a microemulsion method , 1999 .

[62]  H. Kim,et al.  Applying the Taguchi method to the optimization for the synthesis of TiO2 nanoparticles by hydrolysis of TEOT in micelles , 2005 .

[63]  J. Banfield,et al.  Thermodynamic analysis of phase stability of nanocrystalline titania , 1998 .

[64]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[65]  Bin Li,et al.  Interplay between hydrogen bonding and electron solvation on hydrated TiO2(110) , 2006 .

[66]  Y. Yao,et al.  X-ray absorption of nanocrystal TiO2 , 1997 .

[67]  Eugene P. Wigner,et al.  Calculation of the Rate of Elementary Association Reactions , 1937 .

[68]  C. Peden,et al.  Insights into Photoexcited Electron Scavenging Processes on TiO2 Obtained from Studies of the Reaction of O2 with OH Groups Adsorbed at Electronic Defects on TiO2 (110) , 2003 .