Multivariate McCormick relaxations

McCormick (Math Prog 10(1):147–175, 1976) provides the framework for convex/concave relaxations of factorable functions, via rules for the product of functions and compositions of the form $$F\circ f$$F∘f, where $$F$$F is a univariate function. Herein, the composition theorem is generalized to allow multivariate outer functions $$F$$F, and theory for the propagation of subgradients is presented. The generalization interprets the McCormick relaxation approach as a decomposition method for the auxiliary variable method. In addition to extending the framework, the new result provides a tool for the proof of relaxations of specific functions. Moreover, a direct consequence is an improved relaxation for the product of two functions, at least as tight as McCormick’s result, and often tighter. The result also allows the direct relaxation of multilinear products of functions. Furthermore, the composition result is applied to obtain improved convex underestimators for the minimum/maximum and the division of two functions for which current relaxations are often weak. These cases can be extended to allow composition of a variety of functions for which relaxations have been proposed.

[1]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[2]  P. I. Barton,et al.  Global Mixed-Integer Dynamic Optimization , 2005 .

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  Nikolaos V. Sahinidis,et al.  Convex extensions and envelopes of lower semi-continuous functions , 2002, Math. Program..

[5]  Nikolaos V. Sahinidis,et al.  A branch-and-reduce approach to global optimization , 1996, J. Glob. Optim..

[6]  Nikolaos V. Sahinidis,et al.  Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming , 2002 .

[7]  Christodoulos A. Floudas,et al.  Trilinear Monomials with Mixed Sign Domains: Facets of the Convex and Concave Envelopes , 2004, J. Glob. Optim..

[8]  Ignacio E. Grossmann,et al.  A global optimization algorithm for linear fractional and bilinear programs , 1995, J. Glob. Optim..

[9]  Ignacio E. Grossmann,et al.  A Branch and Contract Algorithm for Problems with Concave Univariate, Bilinear and Linear Fractional Terms , 1999, J. Glob. Optim..

[10]  P. I. Barton,et al.  Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems , 2004 .

[11]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[12]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[13]  G. McCormick Nonlinear Programming: Theory, Algorithms and Applications , 1983 .

[14]  PAUL I. BARTON,et al.  Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations , 2005, SIAM J. Sci. Comput..

[15]  Leon Hirsch,et al.  Fundamentals Of Convex Analysis , 2016 .

[16]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[17]  N. Sahinidis,et al.  Convexification and Global Optimization in Continuous And , 2002 .

[18]  Richard P. O’Neill Nested Decomposition of Multistage Convex Programs , 1976 .

[19]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[20]  Leo Liberti,et al.  Introduction to Global Optimization , 2006 .

[21]  Christodoulos A. Floudas,et al.  Rigorous convex underestimators for general twice-differentiable problems , 1996, J. Glob. Optim..

[22]  P. I. Barton,et al.  Global methods for dynamic optimization and mixed-integer dynamic optimization , 2006 .

[23]  Matthew D. Stuber,et al.  Generalized McCormick relaxations , 2011, J. Glob. Optim..

[24]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[25]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[26]  Christodoulos A. Floudas Generalized Benders Decomposition , 2009, Encyclopedia of Optimization.

[27]  Edward M. B. Smith,et al.  Global optimisation of nonconvex MINLPs , 1997 .

[28]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[29]  Callum J. Corbett,et al.  Compiler-Generated Subgradient Code for McCormick Relaxations , 2011 .

[30]  Nikolaos V. Sahinidis,et al.  Semidefinite Relaxations of Fractional Programs via Novel Convexification Techniques , 2001, J. Glob. Optim..

[31]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[32]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[33]  Nikolaos V. Sahinidis,et al.  Global optimization of nonconvex problems with multilinear intermediates , 2015, Math. Program. Comput..

[34]  Fabio Tardella,et al.  Existence and sum decomposition of vertex polyhedral convex envelopes , 2008, Optim. Lett..

[35]  F. Tardella On the existence of polyhedral convex envelopes , 2004 .

[36]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[37]  Sonia Cafieri,et al.  On the composition of convex envelopes for quadrilinear terms , 2013 .

[38]  Christodoulos A. Floudas,et al.  A New Class of Improved Convex Underestimators for Twice Continuously Differentiable Constrained NLPs , 2004, J. Glob. Optim..

[39]  Christodoulos A. Floudas,et al.  Convex envelopes for edge-concave functions , 2005, Math. Program..

[40]  Matthew D. Stuber,et al.  Robust simulation and design using semi-infinite programs with implicit functions , 2011 .

[41]  Nikolaos V. Sahinidis,et al.  Convex envelopes of products of convex and component-wise concave functions , 2012, J. Glob. Optim..

[42]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[43]  Arkadi Nemirovski,et al.  EFFICIENT METHODS IN CONVEX PROGRAMMING , 2007 .

[44]  Christodoulos A. Floudas,et al.  GloMIQO: Global mixed-integer quadratic optimizer , 2012, Journal of Global Optimization.

[45]  A. M. Sahlodin,et al.  Convex/concave relaxations of parametric ODEs using Taylor models , 2011, Comput. Chem. Eng..

[46]  Alexander Mitsos,et al.  Convergence rate of McCormick relaxations , 2012, J. Glob. Optim..

[47]  Paul I. Barton,et al.  McCormick-Based Relaxations of Algorithms , 2009, SIAM J. Optim..

[48]  Christodoulos A. Floudas,et al.  ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations , 2014, Journal of Global Optimization.

[49]  John R. Birge,et al.  Decomposition and Partitioning Methods for Multistage Stochastic Linear Programs , 1985, Oper. Res..

[50]  Nikolaos V. Sahinidis,et al.  BARON: A general purpose global optimization software package , 1996, J. Glob. Optim..

[51]  Leo Liberti,et al.  Convex Envelopes of Monomials of Odd Degree , 2003, J. Glob. Optim..

[52]  Juan M. Zamora,et al.  A global MINLP optimization algorithm for the synthesis of heat exchanger networks with no stream splits , 1998 .

[53]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[54]  Christodoulos A. Floudas,et al.  A Framework for Globally Optimizing Mixed-Integer Signomial Programs , 2013, Journal of Optimization Theory and Applications.