Active Digital Microfluidic Paper Chips with Inkjet‐Printed Patterned Electrodes

Active, paper-based, microfluidic chips driven by electrowetting are fabricated and demonstrated for reagent transport and mixing. Instead of using the passive capillary force on the pulp to actuate a flow of a liquid, a group of digital drops are transported along programmed trajectories above the electrodes printed on low-cost paper, which should allow point-of-care production and diagnostic activities in the future.

[1]  K. Shin,et al.  Fabrication and characterization of inkjet-printed carbon nanotube electrode patterns on paper , 2013 .

[2]  Tza‐Huei Wang,et al.  Full‐Range Magnetic Manipulation of Droplets via Surface Energy Traps Enables Complex Bioassays , 2013, Advanced materials.

[3]  Ali Kemal Yetisen,et al.  Paper-based microfluidic point-of-care diagnostic devices. , 2013, Lab on a chip.

[4]  Jason P. Rolland,et al.  Paper as a novel material platform for devices , 2013 .

[5]  Gareth H. McKinley,et al.  Droplet mobility on lubricant-impregnated surfaces , 2013 .

[6]  Orawon Chailapakul,et al.  Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. , 2013, Lab on a chip.

[7]  J. Justin Gooding,et al.  Recent Advances in Paper-Based Sensors , 2012, Sensors.

[8]  Wyatt C. Nelson,et al.  Droplet Actuation by Electrowetting-on-Dielectric (EWOD): A Review , 2012 .

[9]  Scott T. Phillips,et al.  "Fluidic batteries" as low-cost sources of power in paper-based microfluidic devices. , 2012, Lab on a chip.

[10]  Xu Li,et al.  A perspective on paper-based microfluidics: Current status and future trends. , 2012, Biomicrofluidics.

[11]  Jingjing Xu,et al.  Direct Monolithic Integration of Organic Photovoltaic Circuits on Unmodified Paper , 2011, Advanced materials.

[12]  L. Gervais,et al.  Microfluidic Chips for Point‐of‐Care Immunodiagnostics , 2011, Advanced materials.

[13]  Babak Ziaie,et al.  Laser-treated hydrophobic paper: an inexpensive microfluidic platform. , 2011, Lab on a chip.

[14]  Takao Someya,et al.  Organic Electronics on Banknotes , 2011, Advanced materials.

[15]  George M Whitesides,et al.  Integration of paper-based microfluidic devices with commercial electrochemical readers. , 2010, Lab on a chip.

[16]  Zhihong Nie,et al.  Programmable diagnostic devices made from paper and tape. , 2010, Lab on a chip.

[17]  Mohammed Maniruzzaman,et al.  Paper Actuators Made with Cellulose and Hybrid Materials , 2010, Sensors.

[18]  R. Zengerle,et al.  Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. , 2010, Chemical Society reviews.

[19]  R. Garrell,et al.  Integration of protein processing steps on a droplet microfluidics platform for MALDI-MS analysis. , 2010, Analytical chemistry.

[20]  Yi Cui,et al.  Highly conductive paper for energy-storage devices , 2009, Proceedings of the National Academy of Sciences.

[21]  Jason Heikenfeld,et al.  A full description of a simple and scalable fabrication process for electrowetting displays , 2009 .

[22]  Aaron R. Wheeler,et al.  Optimization of device geometry in single-plate digital microfluidics , 2009 .

[23]  D. Citterio,et al.  Inkjet-printed microfluidic multianalyte chemical sensing paper. , 2008, Analytical chemistry.

[24]  Mohamed Abdelgawad,et al.  All-terrain droplet actuation. , 2008, Lab on a chip.

[25]  Philippe Dubois,et al.  Actuation potentials and capillary forces in electrowetting based microsystems , 2007 .

[26]  Richard B. Fair,et al.  Digital microfluidics: is a true lab-on-a-chip possible? , 2007 .

[27]  G. Whitesides,et al.  Patterned paper as a platform for inexpensive, low-volume, portable bioassays. , 2007, Angewandte Chemie.

[28]  Stephen P. McCarthy,et al.  The effect of polymer surface on the wetting and adhesion of liquid systems , 2007 .

[29]  C. Kim,et al.  Characterization of electrowetting actuation on addressable single-side coplanar electrodes , 2006 .

[30]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[31]  Ali Nadim,et al.  Electrowetting droplet microfluidics on a single planar surface , 2006 .

[32]  Mikko J. Alava,et al.  The physics of paper , 2006 .

[33]  E. Delamarche,et al.  Microfluidics for Processing Surfaces and Miniaturizing Biological Assays , 2005 .

[34]  J. Baret,et al.  Electrowetting: from basics to applications , 2005 .

[35]  H. Fink,et al.  Cellulose: faszinierendes Biopolymer und nachhaltiger Rohstoff , 2005 .

[36]  D. Klemm,et al.  Cellulose: fascinating biopolymer and sustainable raw material. , 2005, Angewandte Chemie.

[37]  R. Fair,et al.  Dynamics of electro-wetting droplet transport , 2002 .

[38]  Peter Andersson,et al.  Active Matrix Displays Based on All‐Organic Electrochemical Smart Pixels Printed on Paper , 2002 .

[39]  S. Cho,et al.  Low voltage electrowetting-on-dielectric , 2002 .

[40]  R. Fair,et al.  Electrowetting-based actuation of liquid droplets for microfluidic applications , 2000 .

[41]  M. Washizu,et al.  Electrostatic actuation of liquid droplets for micro-reactor applications , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[42]  C. Furmidge,et al.  Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention , 1962 .