Attouch-Théra duality revisited: Paramonotonicity and operator splitting
暂无分享,去创建一个
[1] H. Attouch. A General Duality Principle for the Sum of Two Operators 1 , 1996 .
[2] øöö Blockinø. Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .
[3] Bastian Goldlücke,et al. Variational Analysis , 2014, Computer Vision, A Reference Guide.
[4] B. Halpern. Fixed points of nonexpanding maps , 1967 .
[5] U. Mosco. Dual variational inequalities , 1972 .
[6] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[7] Heinz H. Bauschke,et al. A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..
[8] Siegfried Schaible,et al. On a generalization of paramonotone maps and its application to solving the Stampacchia variational inequality , 2006 .
[9] A. Iusem,et al. Set-valued mappings and enlargements of monotone operators , 2008 .
[10] Abdellatif Moudafi. On the stability of the parallel sum of maximal monotone operators , 1996 .
[11] E. Beckenbach. CONVEX FUNCTIONS , 2007 .
[12] Benar Fux Svaiter,et al. A family of projective splitting methods for the sum of two maximal monotone operators , 2007, Math. Program..
[13] J. Lawrence,et al. On Fixed Points of Non-Expansive Piecewise Isometric Mappings , 1987 .
[14] Stephen M. Robinson,et al. Composition duality and maximal monotonicity , 1999, Math. Program..
[15] S. Simons. From Hahn-Banach to monotonicity , 2008 .
[16] P. L. Combettes,et al. Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.
[17] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[18] D. Varberg. Convex Functions , 1973 .
[19] P. L. Combettes,et al. Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .
[20] Sorin-Mihai Grad,et al. On strong and total Lagrange duality for convex optimization problems , 2008 .
[21] Heinz H. Bauschke,et al. A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space , 2006, J. Approx. Theory.
[22] Heinz H. Bauschke. New Demiclosedness Principles for (Firmly) Nonexpansive Operators , 2011, 1103.0991.
[23] Decision Systems.,et al. Convolutions of maximal monotone mappings , 1986 .
[24] Heinz H. Bauschke,et al. Monotone Linear Relations: Maximality and Fitzpatrick Functions , 2008, 0805.4256.
[25] A. Iusem. On some properties of paramonotone operators. , 1998 .
[26] Alfredo N. Iusem,et al. An interior point method with Bregman functions for the variational inequality problem with paramonotone operators , 1998, Math. Program..
[27] Jonathan Eckstein. Splitting methods for monotone operators with applications to parallel optimization , 1989 .
[28] Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .
[29] Michael C. Ferris,et al. Smooth methods of multipliers for complementarity problems , 1999, Math. Program..
[30] R. Wittmann. Approximation of fixed points of nonexpansive mappings , 1992 .
[31] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[32] Benar Fux Svaiter,et al. General Projective Splitting Methods for Sums of Maximal Monotone Operators , 2009, SIAM J. Control. Optim..
[33] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[34] Heinz H. Bauschke,et al. Fitzpatrick Functions and Continuous Linear Monotone Operators , 2007, SIAM J. Optim..
[35] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[36] Sorin-Mihai Grad,et al. New regularity conditions for strong and total Fenchel–Lagrange duality in infinite dimensional spaces , 2008 .
[37] Marion Kee,et al. Analysis , 2004, Machine Translation.
[38] Patrick L. Combettes,et al. A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..
[39] Heinz H. Bauschke,et al. Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.
[40] Isao Yamada,et al. Nonstrictly Convex Minimization over the Bounded Fixed Point Set of a Nonexpansive Mapping , 2003 .
[41] Teemu Pennanen,et al. Dualization of Generalized Equations of Maximal Monotone Type , 1999, SIAM J. Optim..
[42] Benar Fux Svaiter,et al. On Weak Convergence of the Douglas-Rachford Method , 2010, SIAM J. Control. Optim..
[43] Gregory B. Passty. The parallel sum of nonlinear monotone operators , 1986 .
[44] S. Simons. Minimax and monotonicity , 1998 .
[45] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[46] Heinz H. Bauschke,et al. Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter , 2009, 0909.2675.
[47] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[48] Alfredo N. Iusem,et al. A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..