Attouch-Théra duality revisited: Paramonotonicity and operator splitting

The problem of finding the zeros of the sum of two maximally monotone operators is of fundamental importance in optimization and variational analysis. In this paper, we systematically study Attouch-Thera duality for this problem. We provide new results related to Passty's parallel sum, to Eckstein and Svaiter's extended solution set, and to Combettes' fixed point description of the set of primal solutions. Furthermore, paramonotonicity is revealed to be a key property because it allows for the recovery of all primal solutions given just one arbitrary dual solution. As an application, we generalize the best approximation results by Bauschke, Combettes and Luke [H.H. Bauschke, P.L. Combettes, D.R. Luke, A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space, Journal of Approximation Theory 141 (2006) 63-69] from normal cone operators to paramonotone operators. Our results are illustrated through numerous examples.

[1]  H. Attouch A General Duality Principle for the Sum of Two Operators 1 , 1996 .

[2]  øöö Blockinø Phase retrieval, error reduction algorithm, and Fienup variants: A view from convex optimization , 2002 .

[3]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[4]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[5]  U. Mosco Dual variational inequalities , 1972 .

[6]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[7]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[8]  Siegfried Schaible,et al.  On a generalization of paramonotone maps and its application to solving the Stampacchia variational inequality , 2006 .

[9]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[10]  Abdellatif Moudafi On the stability of the parallel sum of maximal monotone operators , 1996 .

[11]  E. Beckenbach CONVEX FUNCTIONS , 2007 .

[12]  Benar Fux Svaiter,et al.  A family of projective splitting methods for the sum of two maximal monotone operators , 2007, Math. Program..

[13]  J. Lawrence,et al.  On Fixed Points of Non-Expansive Piecewise Isometric Mappings , 1987 .

[14]  Stephen M. Robinson,et al.  Composition duality and maximal monotonicity , 1999, Math. Program..

[15]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[16]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[17]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[18]  D. Varberg Convex Functions , 1973 .

[19]  P. L. Combettes,et al.  Solving monotone inclusions via compositions of nonexpansive averaged operators , 2004 .

[20]  Sorin-Mihai Grad,et al.  On strong and total Lagrange duality for convex optimization problems , 2008 .

[21]  Heinz H. Bauschke,et al.  A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space , 2006, J. Approx. Theory.

[22]  Heinz H. Bauschke New Demiclosedness Principles for (Firmly) Nonexpansive Operators , 2011, 1103.0991.

[23]  Decision Systems.,et al.  Convolutions of maximal monotone mappings , 1986 .

[24]  Heinz H. Bauschke,et al.  Monotone Linear Relations: Maximality and Fitzpatrick Functions , 2008, 0805.4256.

[25]  A. Iusem On some properties of paramonotone operators. , 1998 .

[26]  Alfredo N. Iusem,et al.  An interior point method with Bregman functions for the variational inequality problem with paramonotone operators , 1998, Math. Program..

[27]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[28]  Nonlinear functional analysis and its applications, part I: Fixed-point theorems , 1991 .

[29]  Michael C. Ferris,et al.  Smooth methods of multipliers for complementarity problems , 1999, Math. Program..

[30]  R. Wittmann Approximation of fixed points of nonexpansive mappings , 1992 .

[31]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[32]  Benar Fux Svaiter,et al.  General Projective Splitting Methods for Sums of Maximal Monotone Operators , 2009, SIAM J. Control. Optim..

[33]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[34]  Heinz H. Bauschke,et al.  Fitzpatrick Functions and Continuous Linear Monotone Operators , 2007, SIAM J. Optim..

[35]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[36]  Sorin-Mihai Grad,et al.  New regularity conditions for strong and total Fenchel–Lagrange duality in infinite dimensional spaces , 2008 .

[37]  Marion Kee,et al.  Analysis , 2004, Machine Translation.

[38]  Patrick L. Combettes,et al.  A Monotone+Skew Splitting Model for Composite Monotone Inclusions in Duality , 2010, SIAM J. Optim..

[39]  Heinz H. Bauschke,et al.  Finding best approximation pairs relative to two closed convex sets in Hilbert spaces , 2004, J. Approx. Theory.

[40]  Isao Yamada,et al.  Nonstrictly Convex Minimization over the Bounded Fixed Point Set of a Nonexpansive Mapping , 2003 .

[41]  Teemu Pennanen,et al.  Dualization of Generalized Equations of Maximal Monotone Type , 1999, SIAM J. Optim..

[42]  Benar Fux Svaiter,et al.  On Weak Convergence of the Douglas-Rachford Method , 2010, SIAM J. Control. Optim..

[43]  Gregory B. Passty The parallel sum of nonlinear monotone operators , 1986 .

[44]  S. Simons Minimax and monotonicity , 1998 .

[45]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[46]  Heinz H. Bauschke,et al.  Examples of discontinuous maximal monotone linear operators and the solution to a recent problem posed by B.F. Svaiter , 2009, 0909.2675.

[47]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[48]  Alfredo N. Iusem,et al.  A Generalized Proximal Point Algorithm for the Variational Inequality Problem in a Hilbert Space , 1998, SIAM J. Optim..