Gyrotron and its Electron Beam Source: A Review

Microwave occupies a glorious position in the electromagnetic spectrum and in that there are a number of devices in this frequency regime which are capable of high power operations. Among them, gyrotron has proven to be an efficient source for radio frequency (RF) generation at high power level and up to very high frequency. The gyrotron consists of several components like electron beam source, interaction structure, quasi-optical launcher, collector, RF window, magnet system, etc. All the components have their distinct role in the function of the device. Among them, electron beam source also called magnetron injection gun (MIG) is the generator of electron beam and it is very essential that MIG should produce and provide electron beam suitable for the beam-wave interaction at the interaction structure for the effective power growth. The paper presents the introduction of a microwave tube, gyrotron and its components alongwith review of the previous work, the background and the applications. The functions of various components of a gyrotron are discussed with particular highlighting on the electron beam emission from the electron beam source and the beam-wave interaction for power growth in the device. A review on different types of gyrotron electron beam sources is also presented.

[1]  Manfred Thumm,et al.  Progress in gyrotron development , 2003 .

[2]  Manfred Thumm,et al.  State-of-the-art of high power gyro-devices and free electron masers. Update 2004 , 2005 .

[3]  N. Kobayashi,et al.  Long pulse operation of 170 GHz ITER gyrotron by beam current control , 2006 .

[4]  Yang Yan,et al.  The coaxial gyrotron with two electron beams. II. Dual frequency operation , 2007 .

[5]  H. Safa,et al.  Efficiency improvements in a 12 GHz-50 W space TWT , 1989, International Technical Digest on Electron Devices Meeting.

[6]  Om P. Gandhi,et al.  Microwave engineering and applications , 1981 .

[7]  A. G. Litvak,et al.  Megawatt Gyrotrons for ECR Heating and Current-Drive Systems in Controlled-Fusion Facilities , 2003 .

[8]  M. Blank,et al.  Demonstration of a high-power long-pulse 140-GHz gyrotron oscillator , 2004, IEEE Transactions on Plasma Science.

[9]  M. Thumm Recent applications of millimeter and submillimeter wave gyrotrons , 2000, 25th International Conference on Infrared and Millimeter Waves (Cat. No.00EX442).

[10]  J. Stober,et al.  Commissioning of the New Multi-Frequency ECRH System for ASDEX Upgrade , 2006, Joint International Conference on Infrared Millimeter Waves and International Conference on Teraherz Electronics.

[11]  S. Mitsudo,et al.  Development of Terahertz FU CW Gyrotron Series for DNP , 2008 .

[12]  S. Miyake Millimeter-wave materials processing in Japan by high-power gyrotron , 2003 .

[13]  L. Sivan,et al.  Microwave Tube Transmitters , 1994 .

[14]  M. Thumm,et al.  165 GHz, 1.5 MW-coaxial cavity gyrotron with depressed collector , 1999 .

[15]  V. O. Nichiporenko,et al.  Development in Russia of 170 GHz gyrotron for ITER , 2009, 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves.

[16]  B. G. Danly,et al.  Design of a Ka-band gyro-TWT for radar applications , 2001 .

[17]  Theo G. van de Roer,et al.  Microwave Electronic Devices , 1994 .

[18]  Manfred Thumm,et al.  Vacuum electronics : components and devices , 2008 .

[19]  H. R. Jory,et al.  Cyclotron Resonance Devices , 1981 .

[20]  Yong Luo,et al.  Numerical Simulation Study of Double-Beam Magnetron-Injection Guns for High-Power Gyrotrons , 2007, IEEE Transactions on Plasma Science.

[21]  R. Griffin,et al.  High-field DNP and ENDOR with a novel multiple-frequency resonance structure. , 1999, Journal of magnetic resonance.

[22]  Temkin,et al.  Dynamic nuclear polarization with a cyclotron resonance maser at 5 T. , 1993, Physical review letters.

[23]  A. H. W. Beck,et al.  Space-charge waves, and slow electromagnetic waves , 1958 .

[24]  Victor L. Granatstein,et al.  10.5: Development of THz gyrotrons with pulse solenoids for detecting concealed radioactive materials , 2010, 2010 IEEE International Vacuum Electronics Conference (IVEC).

[25]  B. Piosczyk,et al.  A novel 4.5-MW electron gun for a coaxial cavity gyrotron , 2001 .

[26]  Hayashi,et al.  Major Improvement of Gyrotron Efficiency with Beam Energy Recovery. , 1994, Physical review letters.

[27]  Gregory S. Nusinovich,et al.  Introduction to the Physics of Gyrotrons , 2004 .

[28]  Wallace M. Manheimer,et al.  On the possibility of high power gyrotrons for super range resolution radar and atmospheric sensing , 1991 .

[29]  T. Ueno,et al.  Fabrication of Bulk Ceramics by High-Power Millimeter-Wave Radiation , 2000, 2000 13th International Conference on High-Power Particle Beams.

[30]  刘濮鲲,et al.  Study of the Double-beam Magnetron Injection Gun of Gyrotron , 2011 .

[31]  Herbert J. Reich,et al.  Principles of electron tubes , 1941 .

[32]  T. Idehara,et al.  Development of a Tera Hertz Gyrotron as a Radiation Source , 2007 .

[33]  O. Dumbrajs,et al.  Design of a 3-MW 140-GHz gyrotron with a coaxial cavity , 1996 .

[34]  M. Schmid,et al.  EU Megawatt-Class 140-GHz CW Gyrotron , 2006, IEEE Transactions on Plasma Science.

[35]  Baruch Levush,et al.  Design of a Ka-band gyro-TWT for radar applications , 2000, Abstracts. International Vacuum Electronics Conference 2000 (Cat. No.00EX392).

[36]  Roger Lhermitte,et al.  Small cumuli observed with a 3 mm wavelength Doppler radar , 1987 .

[37]  H. Zohm,et al.  Electron cyclotron heating and current drive control by means of frequency step tunable gyrotrons , 2001 .

[38]  A. Jasiński,et al.  Quantitative Assessment of Injury in Rat Spinal Cords In Vivo by MRI of Water Diffusion Tensor , 2008 .

[39]  M. Toriyama,et al.  Grain growth in millimeter wave sintered silicon nitride ceramics , 2004 .

[40]  M. I. Petelin,et al.  Transformation of a whispering gallery mode, propagating in a circular waveguide, into a beam of waves , 1975 .

[41]  H. Huey,et al.  Gyrotrons for ECH applications , 1990 .

[42]  R. Collin Foundations for microwave engineering , 1966 .

[43]  V. Granatstein,et al.  Gigawatt microwave from an intense relativistic electron beam , 1975 .

[44]  Adrian W. Cross,et al.  A cusp electron gun for millimeter wave gyrodevices , 2010 .

[45]  G. S. Nusinovich,et al.  Gyrotron oscillators , 1988 .

[46]  V. A. Flyagin,et al.  The Gyrotron , 1977 .

[47]  R. G. Carter,et al.  Electromagnetic waves: Microwave components and devices , 1990 .

[48]  Manfred Thumm,et al.  Gyrotrons: High-Power Microwave and Millimeter Wave Technology , 2003 .

[49]  I. B. Bott A POWERFUL SOURCE OF MILLIMETRE WAVELENGTH ELECTROMAGNETIC RADIATION , 1965 .

[50]  M. Shapiro,et al.  Studies of the 1.5-MW 110-GHz gyrotron experiment , 2004, IEEE Transactions on Plasma Science.

[51]  Wenlong He,et al.  Design and Numerical Optimization of a Cusp-Gun-Based Electron Beam for Millimeter-Wave Gyro-Devices , 2009, IEEE Transactions on Plasma Science.

[52]  I. Pagonakis,et al.  Post amplification of a gyrotron RF beam by a sheet electron beam , 2006, 2007 Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics.

[53]  Victor L. Granatstein,et al.  Design of a multistage depressed collector system for 1-MW CW gyrotrons. I. Trajectory control of primary and secondary electrons in a two-stage depressed collector , 1999 .

[54]  G. Denisov,et al.  Recent results of development in Russia of 170 GHz gyrotron for ITER , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[55]  Svilen Sabchevski,et al.  Towards the formulation of a realistic 3D model for simulation of magnetron injection guns for gyrotrons (a preliminary study) , 2008 .

[56]  Zhi Hui Geng,et al.  P3-8: Study of the double-beam magnetron injection gun of gyrotron , 2010, 2010 IEEE International Vacuum Electronics Conference (IVEC).

[57]  H Steyskal,et al.  Microwave Tubes 1920–1990: A Review of Ideas and Progress , 1992 .

[58]  A. Chirkov,et al.  Development of a Prototype of a 1-MW 105-156-GHz Multifrequency Gyrotron , 2004 .

[59]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[60]  Shirley W. Harrison,et al.  beam and Wave Electronics in Microwave Tubes , 1960 .

[61]  Manfred Thumm,et al.  Recent Developments on High-Power Gyrotrons—Introduction to This Special Issue , 2011 .

[62]  R. Temkin,et al.  A Gyrotron with a High Q Cavity for Plasma Scattering Diagnostics , 1985, IEEE Transactions on Plasma Science.

[63]  D. Singel,et al.  High frequency (140 GHz) dynamic nuclear polarization: Polarization transfer to a solute in frozen aqueous solution , 1995 .

[64]  Y. Tatematsu,et al.  THz Gyrotron FU CW Series for high power THz technologies , 2008, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[65]  J. Schneider,et al.  Stimulated Emission of Radiation by Relativistic Electrons in a Magnetic Field , 1959 .

[66]  V. Granatstein,et al.  Gigawatt microwave emission from an intense relativistic electron beam. Final report , 1974 .

[67]  Yun-Yen J. Yang,et al.  A two-stream gyrotron traveling wave tube amplifier , 1999 .

[68]  Lino Becerra,et al.  A Spectrometer for Dynamic Nuclear Polarization and Electron Paramagnetic Resonance at High Frequencies , 1995 .

[69]  Wang Chunyi,et al.  Double-stream electron cyclotron maser , 1984 .

[70]  J. M. Baird Survey of fast wave tube developments , 1979, 1979 International Electron Devices Meeting.

[71]  Charles Susskind,et al.  Fundamentals of Microwave Electronics , 1964 .

[72]  Yu. V. Bykov,et al.  The gyrotron system for ceramics sintering , 1995 .

[73]  M. A. Shapiro,et al.  Megawatt Power Level 120 GHz Gyrotrons for ITER Start-Up , 2005 .

[74]  Manfred Thumm,et al.  High Power Gyro-Devices for Plasma Heating and Other Applications , 2005 .

[75]  R. Griffin,et al.  Design of a 460 GHz second harmonic gyrotron oscillator for use in dynamic nuclear polarization , 2002, Twenty Seventh International Conference on Infrared and Millimeter Waves.

[76]  C. J. Edgcombe,et al.  Gyrotron oscillators : their principles and practice , 1993 .

[77]  G. Gantenbein,et al.  170 GHz, 2 MW coaxial cavity gyrotron for ITER - recent results obtained with a short pulse tube - , 2009, 2009 IEEE International Vacuum Electronics Conference.

[78]  Aripin,et al.  High Power, Frequency Tunable, Submillimeter Wave ESR Device Using a Gyrotron as a Radiation Source , 2000 .

[79]  Stefan Illy,et al.  A 2 MW, 170 GHz coaxial cavity gyrotron , 2003 .

[80]  M. Shephard,et al.  A 3D finite element beam optics program with adaptive meshing , 2003, 4th IEEE International Conference on Vacuum Electronics, 2003.

[81]  B. G. Danly,et al.  Characteristics and applications of fast-wave gyrodevices , 1999, Proc. IEEE.

[82]  Victor L. Granatstein,et al.  High-power microwave sources , 1987 .

[83]  M. I. Petelin,et al.  The induced radiation of excited classical oscillators and its use in high-frequency electronics , 1967 .

[84]  Manfred Thumm Progress on Gyrotrons for ITER and Future Thermonuclear Fusion Reactors , 2011 .

[85]  G. Dammertz,et al.  A 2-MW, 170-GHz coaxial cavity gyrotron , 2004, IEEE Transactions on Plasma Science.

[86]  R. S. Symons,et al.  Tubes: still vital after all these years , 1998 .

[87]  B. Pallakoff Broadband, high-power devices , 1985 .

[88]  L. V. Nikolaev,et al.  Experimental investigation of a gyrotron with whispering-gallery modes , 1975 .

[89]  Andreas Meier,et al.  CVD diamond windows studied with low- and high-power millimeter waves , 2002 .

[90]  R. Twiss,et al.  Radiation Transfer and the Possibility of Negative Absorption in Radio Astronomy , 1958 .

[91]  V. A. Flyagin,et al.  Some perspectives on the use of powerful gyrotrons for the electron-cyclotron plasma heating in large tokamaks , 1980 .

[92]  Shenggang Liu,et al.  Two-beam magnetron injection guns for coaxial gyrotron with two electron beams , 2009 .

[93]  Robert G Griffin,et al.  250GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. , 2007, Journal of magnetic resonance.

[94]  B. Basu,et al.  Electromagnetic theory and applications in beam-wave electronics , 1996 .

[95]  Y. Bykov,et al.  Influence of resonator profile on the maximum power of a cyclotron resonance maser , 1975 .

[96]  M. Thumm,et al.  D-band frequency step-tuning of A 1 MW gyrotron using a brewster output window , 1997 .

[97]  M. Glyavin,et al.  A terahertz gyrotron with pulsed magnetic field , 2007 .

[98]  Teruo Saito,et al.  ESR spectrometer with a wide frequency range using a gyrotron as a radiation power source , 1995 .

[99]  O. Dumbrajs,et al.  Coaxial gyrotrons: past, present, and future (review) , 2004, IEEE Transactions on Plasma Science.

[100]  Manfred Thumm,et al.  Frequency step-tunable (114–170 GHz) megawatt gyrotrons for plasma physics applications , 2001 .

[101]  C. Jiao,et al.  Beam-wave Coupling in a Double-beam Gyrotron Traveling Wave Amplifier , 2007 .

[102]  Forschungszentrum Karlsruhe State-of-the-Art of High Power Gyro-Devices and Free Electron Masers Update 2002 , 2003 .

[103]  Victor L. Granatstein,et al.  Microwave amplification with an intense relativistic electron beam , 1975 .

[105]  M. Glick,et al.  Multi-octave high-power TWT operation , 1975 .

[106]  M. Petelin,et al.  An experimental study of a gyrotron, operating at the second harmonic of the cyclotron frequency, with optimized distribution of the high-frequency field , 1974 .

[107]  V. Manuilov,et al.  Double-beam gyrotron electron-optical systems , 1991 .

[108]  Manfred Thumm,et al.  Sintering of advanced ceramics using a 30-GHz, 10-kW, CW industrial gyrotron , 1999 .

[109]  J. L. Hirshfield,et al.  Electron Cyclotron Maser , 1964 .

[110]  Yang Yan,et al.  The coaxial gyrotron with two electron beams. I. Linear theory and nonlinear theory , 2007 .

[111]  W. Gerum,et al.  94 GHz TWT for military radar applications , 2000, Abstracts. International Vacuum Electronics Conference 2000 (Cat. No.00EX392).

[112]  V. Granatstein,et al.  Coherent synchrotron radiation from an intense relativistic electron beam , 1974 .

[113]  J. Neilson,et al.  Optimal synthesis of quasi-optical launchers for high-power gyrotrons , 2006, IEEE Transactions on Plasma Science.

[114]  Mike Read,et al.  Design of a permanent magnet gyrotron for active denial systems , 2009, 2009 IEEE International Vacuum Electronics Conference.

[115]  J. Feinstein,et al.  Status review of research on millimeter-wave tubes , 1987, IEEE Transactions on Electron Devices.

[116]  W. Lawson,et al.  Depressed collectors for high-power gyrotrons , 1990 .

[117]  W. Gerum,et al.  94-GHz TWT for military radar applications , 2001 .

[118]  T. Antonsen,et al.  Development of THz gyrotrons with pulse solenoids for detecting concealed radioactive materials , 2010, 35th International Conference on Infrared, Millimeter, and Terahertz Waves.

[119]  M. Thumm History, presence and future of gyrotrons , 2009, 2009 IEEE International Vacuum Electronics Conference.

[120]  R. F. Watkins,et al.  Higher power, low cost mini TWTs , 2002, Third IEEE International Vacuum Electronics Conference (IEEE Cat. No.02EX524).

[121]  Manfred Thumm,et al.  140-GHz gyrotron with multimegawatt output power , 2000 .

[122]  Douglas C. Maus,et al.  Polarization-enhanced NMR spectroscopy of biomolecules in frozen solution. , 1997, Science.

[123]  W. Lawson,et al.  Magnetron injection gun (MIG) design for gyrotron applications , 1986 .

[124]  Samuel Y. Liao,et al.  Microwave Devices and Circuits , 1980 .