Applications of Variational Analysis to a Generalized Fermat-Torricelli Problem
暂无分享,去创建一个
[1] Dimitri P. Bertsekas,et al. Convex Analysis and Optimization , 2003 .
[2] Peter R. Wolenski,et al. The subgradient formula for the minimal time function in the case of constant dynamics in Hilbert space , 2004, J. Glob. Optim..
[3] Boris S. Mordukhovich,et al. Well-Posedness of Minimal Time Problems with Constant Dynamics in Banach Spaces , 2010 .
[4] J. Borwein,et al. Techniques of variational analysis , 2005 .
[5] Boris S. Mordukhovich,et al. Limiting subgradients of minimal time functions in Banach spaces , 2010, J. Glob. Optim..
[6] H. Martini,et al. The Fermat–Torricelli Problem in Normed Planes and Spaces , 2002, 0707.2592.
[7] Kung Fu Ng,et al. Subdifferentials of a minimum time function in Banach spaces , 2006 .
[8] Nguyen Mau Nam,et al. Subgradients of Minimal Time Functions Under Minimal Requirements , 2010, 1009.1585.
[9] B. Mordukhovich. Variational Analysis and Generalized Differentiation II: Applications , 2006 .
[10] Michael L. Overton,et al. An Efficient Primal-Dual Interior-Point Method for Minimizing a Sum of Euclidean Norms , 2000, SIAM J. Sci. Comput..
[11] V. G. Bolti︠a︡nskiĭ,et al. Geometric Methods and Optimization Problems , 1998 .
[12] Bhaswar B. Bhattacharya,et al. On the Fermat-Weber Point of a Polygonal Chain and its Generalizations , 2010, Fundam. Informaticae.
[13] B. Mordukhovich. Maximum principle in the problem of time optimal response with nonsmooth constraints PMM vol. 40, n≗ 6, 1976, pp. 1014-1023 , 1976 .
[14] R. Phelps. Convex Functions, Monotone Operators and Differentiability , 1989 .
[15] J. Borwein,et al. Convex Functions: Constructions, Characterizations and Counterexamples , 2010 .
[16] T. V. Tan,et al. An Extension of the Fermat-Torricelli Problem , 2010 .
[17] B. Mordukhovich. Variational analysis and generalized differentiation , 2006 .
[18] Frank Plastria,et al. On the point for which the sum of the distances to n given points is minimum , 2009, Ann. Oper. Res..
[19] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.