Diversity and Evolution of the Phenazine Biosynthesis 1 Pathway

[1]  L. Heide,et al.  Aromatic Prenylation in Phenazine Biosynthesis , 2009, Journal of Biological Chemistry.

[2]  Philippe Lemanceau,et al.  Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt , 2009, The ISME Journal.

[3]  D. Fitzpatrick Lines of Evidence for Horizontal Gene Transfer of a Phenazine Producing Operon into Multiple Bacterial Species , 2009, Journal of Molecular Evolution.

[4]  R. Breinbauer,et al.  PhzA/B catalyzes the formation of the tricycle in phenazine biosynthesis. , 2008, Journal of the American Chemical Society.

[5]  Tracy K. Teal,et al.  Redox-Active Antibiotics Control Gene Expression and Community Behavior in Divergent Bacteria , 2008, Science.

[6]  C. Farnet,et al.  Biosynthesis of diazepinomicin/ECO-4601, a Micromonospora secondary metabolite with a novel ring system. , 2008, Journal of natural products.

[7]  R. Reinhardt,et al.  The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. , 2008, Environmental microbiology.

[8]  Derrick J. Zwickl :Phylogenetic Trees Made Easy: A How-To Manual , 2008 .

[9]  Michael J E Sternberg,et al.  Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre , 2008, Proteins.

[10]  P. de Vos,et al.  Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity , 2007, Journal of applied microbiology.

[11]  M. Nei,et al.  Molecular Evolutionary Genetics Analysis , 2007 .

[12]  L. Heide,et al.  A Gene Cluster for Prenylated Naphthoquinone and Prenylated Phenazine Biosynthesis in Streptomyces cinnamonensis DSM 1042 , 2006, Chembiochem : a European journal of chemical biology.

[13]  D. Newman,et al.  The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa , 2006, Molecular microbiology.

[14]  W. Blankenfeldt,et al.  Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. , 2006, Annual review of phytopathology.

[15]  David Posada,et al.  ModelTest Server: a web-based tool for the statistical selection of models of nucleotide substitution online , 2006, Nucleic Acids Res..

[16]  D. Newman,et al.  Erratum: Corrigendum: Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics , 2006 .

[17]  B. Snel,et al.  Toward Automatic Reconstruction of a Highly Resolved Tree of Life , 2006, Science.

[18]  J. Lipuma Update on the Burkholderia cepacia complex , 2005, Current opinion in pulmonary medicine.

[19]  Matthew Berriman,et al.  ACT: the Artemis comparison tool , 2005, Bioinform..

[20]  Ignazio Carbone,et al.  SNAP: workbench management tool for evolutionary population genetic analysis , 2005, Bioinform..

[21]  M. Kimura A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences , 1980, Journal of Molecular Evolution.

[22]  L. Tong,et al.  Structure and function of phenazine-biosynthesis protein PhzF from Pseudomonas fluorescens 2-79 , 2004 .

[23]  K. Tsuchiya,et al.  PCR‐based identification and characterization of Burkholderia cepacia complex bacteria from clinical and environmental sources , 2004, Letters in applied microbiology.

[24]  A. Fraser,et al.  Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Hassett,et al.  Pseudomonas aeruginosa Pyocyanin Is Critical for Lung Infection in Mice , 2004, Infection and Immunity.

[26]  N. Moran,et al.  The evolutionary history of quorum-sensing systems in bacteria. , 2004, Molecular biology and evolution.

[27]  J. Nielsen,et al.  Phenazine natural products: biosynthesis, synthetic analogues, and biological activity. , 2004, Chemical reviews.

[28]  Andreas Kappler,et al.  Phenazines and Other Redox-Active Antibiotics Promote Microbial Mineral Reduction , 2004, Applied and Environmental Microbiology.

[29]  D. Benson,et al.  Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani , 1995, Applied Microbiology and Biotechnology.

[30]  S. R. Giddens,et al.  The influence of antibiotic production and pre-emptive colonization on the population dynamics of Pantoea agglomerans (Erwinia herbicola) Eh1087 and Erwinia amylovora in planta. , 2003, Environmental microbiology.

[31]  P. Vandamme,et al.  Updated Version of the Burkholderia cepacia Complex Experimental Strain Panel , 2003, Journal of Clinical Microbiology.

[32]  S. R. Giddens,et al.  Characterization of a novel phenazine antibiotic gene cluster in Erwinia herbicola Eh1087 , 2002, Molecular microbiology.

[33]  L. Thomashow,et al.  Functional Analysis of Genes for Biosynthesis of Pyocyanin and Phenazine-1-Carboxamide from Pseudomonas aeruginosa PAO1 , 2001, Journal of bacteriology.

[34]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[35]  L. Thomashow,et al.  Phenazine biosynthesis in Pseudomonas fluorescens: branchpoint from the primary shikimate biosynthetic pathway and role of phenazine-1,6-dicarboxylic acid. , 2001, Journal of the American Chemical Society.

[36]  T. Chin-A-Woeng,et al.  Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. , 2000, Molecular plant-microbe interactions : MPMI.

[37]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[38]  F. Ausubel,et al.  Plants and animals share functionally common bacterial virulence factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Ju-Young Park,et al.  Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. , 2000, International journal of systematic and evolutionary microbiology.

[40]  P. Vandamme,et al.  Diagnostically and Experimentally Useful Panel of Strains from the Burkholderia cepacia Complex , 2000, Journal of Clinical Microbiology.

[41]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[42]  A. Boronin,et al.  A Seven-Gene Locus for Synthesis of Phenazine-1-Carboxylic Acid by Pseudomonas fluorescens2-79 , 1998, Journal of bacteriology.

[43]  U. Deppenmeier,et al.  Isolation and Characterization of Methanophenazine and Function of Phenazines in Membrane-Bound Electron Transport ofMethanosarcina mazei Gö1 , 1998, Journal of bacteriology.

[44]  J. Bull,et al.  Combining data in phylogenetic analysis. , 1996, Trends in ecology & evolution.

[45]  F. Gong,et al.  Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium. Pseudomonas aureofaciens 30-84. , 1995, FEMS microbiology letters.

[46]  M. Schroth,et al.  Cloning of a phenazine biosynthetic locus of Pseudomonas aureofaciens PGS12 and analysis of its expression in vitro with the ice nucleation reporter gene , 1994, Applied and environmental microbiology.

[47]  J. Loper,et al.  Two Genomic Regions Involved in Catechol Siderophore Production by Erwinia carotovora , 1994, Applied and environmental microbiology.

[48]  T. Stull,et al.  Marked phenotypic variability in Pseudomonas cepacia isolated from a patient with cystic fibrosis , 1993, Journal of clinical microbiology.

[49]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[50]  M. Mazzola,et al.  Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats , 1992, Applied and environmental microbiology.

[51]  William R. Taylor,et al.  The rapid generation of mutation data matrices from protein sequences , 1992, Comput. Appl. Biosci..

[52]  S. Goodison,et al.  16S ribosomal DNA amplification for phylogenetic study , 1991, Journal of bacteriology.

[53]  L. Thomashow,et al.  Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici , 1988, Journal of bacteriology.

[54]  M. Schroth,et al.  Role of Antibiosis in Competition of Erwinia Strains in Potato Infection Courts , 1988, Applied and environmental microbiology.

[55]  J. M. Turner,et al.  Occurrence, biochemistry and physiology of phenazine pigment production. , 1986, Advances in microbial physiology.

[56]  H. Akaike A new look at the statistical model identification , 1974 .

[57]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[58]  E. King,et al.  Two simple media for the demonstration of pyocyanin and fluorescin. , 1954, The Journal of laboratory and clinical medicine.