New parallel sparse direct solvers for engineering applications

At the heart of many computations in engineering lies the need to efficiently and accurately solve large sparse linear systems of equations. Direct methods are frequently the method of choice because of their robustness, accuracy and their potential for use as black-box solvers. In the last few years, there have been many new developments and a number of new modern parallel general-purpose sparse solvers have been written for inclusion within the HSL mathematical software library (http://www.hsl.rl.ac.uk/). In this paper, we introduce and briefly review these solvers for symmetrically structured sparse systems. We describe the algorithms used, highlight key features (including bit-compatibility and out-of-core working), and then, using problems arising from a range of engineering applications, we illustrate and compare their performances. We demonstrate that modern direct solvers are able to accurately solve systems of order 10 in less than 10 minutes on an 8-core machine.

[1]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[2]  Timothy A. Davis,et al.  Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.

[3]  I. Duff,et al.  Towards an automatic ordering for a symmetric sparse direct solver , 2005 .

[4]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[5]  Iain S. Duff,et al.  MA57---a code for the solution of sparse symmetric definite and indefinite systems , 2004, TOMS.

[6]  Jennifer A. Scott,et al.  Algorithm 891: A Fortran virtual memory system , 2009, TOMS.

[7]  Bora Uçar,et al.  A Symmetry Preserving Algorithm for Matrix Scaling , 2014, SIAM J. Matrix Anal. Appl..

[8]  Jennifer A. Scott,et al.  Design of a Multicore Sparse Cholesky Factorization Using DAGs , 2010, SIAM J. Sci. Comput..

[9]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[10]  SchenkOlaf,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2004 .

[11]  Jennifer A. Scott,et al.  HSL_MA97 : a bit-compatible multifrontal code for sparse symmetric systems , 2011 .

[12]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[13]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[14]  Jennifer A. Scott,et al.  An indefinite sparse direct solver for large problems on multicore machines , 2010 .

[15]  I. Duff,et al.  The factorization of sparse symmetric indefinite matrices , 1991 .

[16]  Julien Langou,et al.  A Class of Parallel Tiled Linear Algebra Algorithms for Multicore Architectures , 2007, Parallel Comput..

[17]  Jennifer A. Scott,et al.  Partial factorization of a dense symmetric indefinite matrix , 2012, ACM Trans. Math. Softw..

[18]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[19]  Jennifer A. Scott,et al.  The effects of scalings on the performance of a sparse symmetric indefinite solver , 2008 .

[20]  Julien Langou,et al.  The Impact of Multicore on Math Software , 2006, PARA.

[21]  Jack J. Dongarra,et al.  A set of level 3 basic linear algebra subprograms , 1990, TOMS.

[22]  Matemática,et al.  Society for Industrial and Applied Mathematics , 2010 .

[23]  Olaf Schenk,et al.  Solving unsymmetric sparse systems of linear equations with PARDISO , 2002, Future Gener. Comput. Syst..

[24]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[25]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[26]  J. W. Walker,et al.  Direct solutions of sparse network equations by optimally ordered triangular factorization , 1967 .

[27]  Joseph W. H. Liu,et al.  Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.

[28]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[29]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[30]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[31]  Nicholas I. M. Gould,et al.  A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations , 2004, TOMS.

[32]  Jennifer A. Scott,et al.  An out-of-core sparse Cholesky solver , 2009, TOMS.