Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping.

We present the first demonstration of a new mechanism for temporal compression of ultrashort light pulses that operates at high (i.e., ionizing) intensities. By propagating pulses inside a hollow waveguide filled with low-pressure argon gas, we demonstrate a self-compression from 30 to 13 fs, without the need for any external dispersion compensation. Theoretical models show that 3D spatiotemporal reshaping of the pulse due to a combination of ionization-induced spectral broadening, plasma-induced refraction, and guiding in the hollow waveguide are necessary to explain the compression mechanism.

[1]  Andrew G. Glen,et al.  APPL , 2001 .