A Class of Lattices with Möbius Function ± 1, 0
暂无分享,去创建一个
[1] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[2] Moshe Jarden,et al. The elementary theory ofω-free ax fields , 1976 .
[3] I. Olkin,et al. Inequalities: Theory of Majorization and Its Applications , 1980 .
[4] Jeffrey B. Remmel,et al. Bijective Proofs of Some Classical Partition Identities , 1982, J. Comb. Theory A.
[5] Thomas Brylawski,et al. The lattice of integer partitions , 1973, Discret. Math..
[6] Vinay V. Deodhar. Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function , 1977 .
[7] D. R. Fulkerson,et al. Incidence matrices and interval graphs , 1965 .
[8] Daniel I. A. Cohen,et al. PIE-Sums: A Combinatorial Tool for Partition Theory , 1981, J. Comb. Theory, Ser. A.
[9] Daya-Nand Verma,et al. Möbius inversion for the Bruhat ordering on a Weyl group , 1971 .
[10] G. Andrews. The Theory of Partitions: Frontmatter , 1976 .