Noncontact Photogrammetric Measurement of Vertical Bridge Deflection

This paper reports on the results from a study of vertical deflection measurement of bridges using digital close-range terrestrial photogrammetry (DCRTP). The study consisted of a laboratory and two field exercises. In the laboratory exercise, photogrammetric measurements of a 11.6 m (38 ft) steel beam loaded at midspan were made and compared with dial gauge readings and elastic beam theory. In the first field exercise, the initial camber and dead load deflection of 31.1 m (102 ft) prestressed concrete bridge girders were measured photogrammetrically and compared with level rod and total station readings. A comparison of the photogrammetric measurements with the dead load deflection diagram is also made. In the second field exercise, the vertical deflection of a 14.9 m (49 ft) noncomposite steel girder bridge loaded with two dump trucks was measured. Photogrammetric results are compared with deflections estimated using elastic finite-element analysis, level rod readings, and curvature-based deflection measurements. The paper is concluded with a discussion of work in progress to further improve the accuracy of DCRTP in the field.