On the applicability of the HSAB principle through the use of improved computational schemes for chemical hardness evaluation

Finite difference schemes, named Compact Finite Difference Schemes with Spectral‐like Resolution, have been used for a less crude approximation of the analytical hardness definition as the second‐order derivative of the energy with respect to the electron number. The improved computational schemes, at different levels of theory, have been used to calculate global hardness values of some probe bases, traditionally classified as hard and soft on the basis of their chemical behavior, and to investigate the quantitative applicability of the HSAB principle. Exchange acid‐base reactions have been used to test the HSAB principle assuming the reaction energies as a measure of the stabilization of product adducts. © 2004 Wiley Periodicals, Inc. J Comput Chem 25: 994–1003, 2004

[1]  S. Pal,et al.  Principle of maximum hardness: an accurate ab initio study , 1993 .

[2]  P. Fuentealba,et al.  Empirical Energy−Density Relationships for the Analysis of Substituent Effects in Chemical Reactivity , 2000 .

[3]  N. Russo,et al.  Correlation between Energy, Polarizability, and Hardness Profiles in the Isomerization Reaction of HNO and ClNO , 2001 .

[4]  N. Russo,et al.  Density functional orbital reactivity indices. Fundamentals and applications , 1998 .

[5]  P. Geerlings,et al.  Conceptual density functional theory. , 2003, Chemical reviews.

[6]  P. Chattaraj,et al.  HARDNESS, CHEMICAL POTENTIAL, AND VALENCY PROFILES OF MOLECULES UNDER INTERNAL ROTATIONS , 1994 .

[7]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[8]  M. Grigorov,et al.  Numerical evaluation of the internal orbitally resolved chemical hardness tensor in density functional theory , 1997 .

[9]  I. Nebot-Gil,et al.  G2(MP2) study of the substituent effects in the H3BXHnMe3−n (X=N, P; n=0–3) donor–acceptor complexes , 1998 .

[10]  A. Toro‐Labbé,et al.  Energy, chemical potential and hardness profiles for the rotational isomerization of HOOH, HSOH and HSSH , 1999 .

[11]  A. Siu,et al.  A Study of Silver (I) Ion−Organonitrile Complexes: Ion Structures, Binding Energies, and Substituent Effects , 2001 .

[12]  P. Schleyer,et al.  An ab initio study resulting in a greater understanding of the HSAB principle , 1994 .

[13]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[14]  P. Fuentealba,et al.  Scrutiny of the HSAB principle in some representative acid-base reactions , 2001 .

[15]  Robert G. Parr,et al.  Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited , 2000 .

[16]  P. Khosla,et al.  Polynomial interpolation methods for viscous flow calculations , 1977 .

[17]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[18]  P. N. Skancke,et al.  Density Functional Theory and Perturbation Calculations on Some Lewis Acid−Base Complexes. A Systematic Study of Substitution Effects , 1996 .

[19]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[20]  S. Scheiner,et al.  Hardness Profiles of Some 1,2-Hydrogen Shift Reactions , 1995 .

[21]  P. Geerlings,et al.  Ab initio determination of substituent constants in a density functional theory formalism: calculation of intrinsic group electronegativity, hardness, and softness , 1993 .

[22]  K. Chandrakumar,et al.  Critical Study of Local Reactivity Descriptors for Weak Interactions: Qualitative and Quantitative Analysis of Adsorption of Molecules in the Zeolite Lattice , 2000 .

[23]  Swapan K. Ghosh,et al.  Molecular Hardness, Polarizability and Valency Variation of Formamide and Thioformamide on Internal Rotation: A Density Functional Study , 2000 .

[24]  G. Klopman,et al.  Chemical reactivity and the concept of charge- and frontier-controlled reactions , 1968 .

[25]  M. Nguyen,et al.  DENSITY FUNCTIONAL APPROACH TO REGIOCHEMISTRY, ACTIVATION ENERGY, AND HARDNESS PROFILE IN 1,3-DIPOLAR CYCLOADDITIONS , 1998 .

[26]  N. Russo,et al.  Density-Functional Approach to Hardness Evaluation and Its Use in the Study of the Maximum Hardness Principle , 1998 .

[27]  Roman F. Nalewajski,et al.  Electrostatic effects in interactions between hard (soft) acids and bases , 1984 .

[28]  R. Parr,et al.  Variational method for determining the Fukui function and chemical hardness of an electronic system , 1995 .

[29]  Guangkun Liu Orbital hardness matrix and Fukui indices, their direct self-consistent-field calculations, and a derivation of localized Kohn–Sham orbitals , 1997 .

[30]  K. L. Sebastian On the proof of the principle of maximum hardness , 1994 .

[31]  P. Chattaraj Chemical Reactivity and Selectivity: Local HSAB Principle versus Frontier Orbital Theory , 2001 .

[32]  R. Pearson THE PRINCIPLE OF MAXIMUM HARDNESS , 1993 .

[33]  M. Nguyen,et al.  1,3-Dipolar cycloadditions of thionitroso compounds (R-N)S): a density functional theory study , 1999 .

[34]  R. Parr,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[35]  A. Lever,et al.  When does the Hard and Soft Acid Base principle apply in the gas phase , 2001 .

[36]  I. Nebot-Gil,et al.  Comparative G2(MP2) Study of H 3 NBX 3 and H 3 PBX 3 (X = H, F, and Cl) Donor−Acceptor Complexes , 1998 .

[37]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[38]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[39]  R. Parr,et al.  Density-functional theory of the electronic structure of molecules. , 1995, Annual review of physical chemistry.

[40]  M. V. Ganduglia-Pirovano,et al.  Reactivity kernels, the normal modes of chemical reactivity, and the hardness and softness spectra , 1967 .

[41]  R. Pearson Chemical hardness — A historical introduction , 1993 .

[42]  Jeremy N. S. Evans,et al.  The Fukui Function: A Key Concept Linking Frontier Molecular Orbital Theory and the Hard-Soft-Acid-Base Principle , 1995 .

[43]  N. Russo,et al.  On the hardness evaluation in solvent for neutral and charged systems. , 2002, Journal of the American Chemical Society.

[44]  F. Méndez,et al.  The Hard and Soft Acids and Bases Principle: An Atoms in Molecules Viewpoint , 1994 .

[45]  R. Parr,et al.  Principle of maximum hardness , 1991 .

[46]  A. Toro‐Labbé Characterization of Chemical Reactions from the Profiles of Energy, Chemical Potential, and Hardness , 1999 .

[47]  G. Frenking,et al.  Comparative Theoretical Study of Lewis Acid-Base Complexes of BH3, BF3, BCl3, AlCl3, and SO2 , 1994 .

[48]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[49]  Swapan K. Ghosh,et al.  A DENSITY FUNCTIONAL APPROACH TO HARDNESS, POLARIZABILITY, AND VALENCY OF MOLECULES IN CHEMICAL REACTIONS , 1996 .

[50]  Joannopoulos,et al.  Hardness and softness in the ab initio study of polyatomic systems. , 1993, Physical review letters.

[51]  A. Toro‐Labbé,et al.  Hardness profile and activation hardness for rotational isomerization processes. 2. The maximum hardness principle , 1995 .

[52]  P W Ayers,et al.  Variational principles for describing chemical reactions. Reactivity indices based on the external potential. , 2001, Journal of the American Chemical Society.

[53]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[54]  M. Solà,et al.  Global hardness evaluation using simplified models for the hardness kernel , 2002 .

[55]  R. Parr,et al.  Simplified Models for Hardness Kernel and Calculations of Global Hardness , 1997 .

[56]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[57]  P. Fuentealba,et al.  Woodward−Hoffmann Rule in the Light of the Principles of Maximum Hardness and Minimum Polarizability: DFT and Ab Initio SCF Studies , 2000 .

[58]  S. Scheiner,et al.  Hardness and Chemical Potential Profiles for Some Open-Shell HAB → HBA Type Reactions. Ab Initio and Density Functional Study , 1998 .

[59]  Francisco Méndez,et al.  Chemical Reactivity of Enolate Ions: The Local Hard and Soft Acids and Bases Principle Viewpoint , 1994 .

[60]  P. Chattaraj,et al.  Ab initio SCF study of maximum hardness and maximum molecular valency principles , 1993 .

[61]  L. Komorowski Empirical evaluation of chemical hardness , 1987 .

[62]  D. Datta "Hardness profile" of a reaction path , 1992 .

[63]  A. Toro‐Labbé,et al.  Relations between Potential Energy, Electronic Chemical Potential, and Hardness Profiles , 1997 .

[64]  M. V. Ganduglia-Pirovano,et al.  ELECTRONIC AND NUCLEAR CHEMICAL REACTIVITY , 1994 .

[65]  R. Drago,et al.  Quantitative evaluation of the HSAB [hard-soft acid-base] concept , 1972 .

[66]  Ralph G. Pearson,et al.  Recent advances in the concept of hard and soft acids and bases , 1987 .

[67]  L. Komorowski Electronegativity and hardness in the chemical approximation , 1987 .

[68]  Henry Chermette,et al.  Chemical reactivity indexes in density functional theory , 1999 .

[69]  R. Pearson Hard and soft acids and bases, HSAB, part 1: Fundamental principles , 1968 .

[70]  R. Drago Quantitative evaluation and prediction of donor-acceptor interactions , 1973 .

[71]  P. Geerlings,et al.  MECHANISM OF 2 + 1 CYCLOADDITIONS OF HYDROGEN ISOCYANIDE TO ALKYNES : MOLECULAR ORBITAL AND DENSITY FUNCTIONAL THEORY STUDY , 1999 .

[72]  R. Drago Pearson's quantitative statement of HSAB [hard-soft acid-base] , 1973 .

[73]  Ralph G. Pearson,et al.  Absolute electronegativity and absolute hardness of Lewis acids and bases , 1985 .

[74]  R. Parr Density-functional theory of atoms and molecules , 1989 .