Rank Centrality: Ranking from Pairwise Comparisons

The question of aggregating pairwise comparisons to obtain a global ranking over a collection of objects has been of interest for a very long time: be it ranking of online gamers (e.g., MSR’s TrueSkill system) and chess players, aggregating social opinions, or deciding which product to sell based on transactions. In most settings, in addition to obtaining a ranking, finding ‘scores’ for each object (e.g., player’s rating) is of interest for understanding the intensity of the preferences.In this paper, we propose Rank Centrality , an iterative rank aggregation algorithm for discovering scores for objects (or items) from pairwise comparisons. The algorithm has a natural random walk interpretation over the graph of objects with an edge present between a pair of objects if they are compared; the score, which we call Rank Centrality, of an object turns out to be its stationary probability under this random walk.To study the efficacy of the algorithm, we consider the popular Bradley-Terry-Luce (BTL) model (equivalent to the Multinomial Logit (MNL) for pairwise comparisons) in which each object has an associated score that determines the probabilistic outcomes of pairwise comparisons between objects. In terms of the pairwise marginal probabilities, which is the main subject of this paper, the MNL model and the BTL model are identical. We bound the finite sample error rates between the scores assumed by the BTL model and those estimated by our algorithm. In particular, the number of samples required to learn the score well with high probability depends on the structure of the comparison graph. When the Laplacian of the comparison graph has a strictly positive spectral gap, e.g., each item is compared to a subset of randomly chosen items, this leads to dependence on the number of samples that is nearly order optimal.Experimental evaluations on synthetic data sets generated according to the BTL model show that our algorithm performs as well as the maximum likelihood estimator for that model and outperforms other popular ranking algorithms.

[1]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  Claire Mathieu,et al.  Selection in the presence of noise: the design of playoff systems , 1994, SODA '94.

[4]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[5]  James P. Keener,et al.  The Perron-Frobenius Theorem and the Ranking of Football Teams , 1993, SIAM Rev..

[6]  Matthew J. Salganik,et al.  Wiki surveys : Open and quantifiable social data collection ∗ , 2012 .

[7]  R. Plackett The Analysis of Permutations , 1975 .

[8]  Teh-Hsing Wei,et al.  The algebraic foundations of ranking theory , 1952 .

[9]  D. Hunter MM algorithms for generalized Bradley-Terry models , 2003 .

[10]  Mark Braverman,et al.  Noisy sorting without resampling , 2007, SODA '08.

[11]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[12]  K. Talluri,et al.  The Theory and Practice of Revenue Management , 2004 .

[13]  Devavrat Shah,et al.  Finding Rumor Sources on Random Trees , 2011, Oper. Res..

[14]  Andrei Z. Broder,et al.  On the second eigenvalue of random regular graphs , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[15]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[16]  Nir Ailon,et al.  Aggregating inconsistent information: Ranking and clustering , 2008 .

[17]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[18]  Andreas Krause,et al.  Advances in Neural Information Processing Systems (NIPS) , 2014 .

[19]  Bruce E. Hajek,et al.  Minimax-optimal Inference from Partial Rankings , 2014, NIPS.

[20]  J. Seeley The net of reciprocal influence; a problem in treating sociometric data. , 1949 .

[21]  Endre Szemerédi,et al.  On the second eigenvalue of random regular graphs , 1989, STOC '89.

[22]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[23]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[24]  M. Kendall Further contributions to the theory of paired comparisons , 1955 .

[25]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[26]  Nir Ailon,et al.  Aggregation of Partial Rankings, p-Ratings and Top-m Lists , 2007, SODA '07.

[27]  Arun Rajkumar,et al.  A Statistical Convergence Perspective of Algorithms for Rank Aggregation from Pairwise Data , 2014, ICML.

[28]  F. Mosteller Remarks on the method of paired comparisons: I. The least squares solution assuming equal standard deviations and equal correlations , 1951 .

[29]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[30]  Devavrat Shah,et al.  Rumors in a Network: Who's the Culprit? , 2009, IEEE Transactions on Information Theory.

[31]  H. A. David,et al.  The method of paired comparisons , 1966 .

[32]  Dorit S. Hochbaum,et al.  Ranking Sports Teams and the Inverse Equal Paths Problem , 2006, WINE.

[33]  Joel A. Tropp,et al.  User-Friendly Tail Bounds for Sums of Random Matrices , 2010, Found. Comput. Math..

[34]  L. R. Ford Solution of a Ranking Problem from Binary Comparisons , 1957 .

[35]  Maksims Volkovs,et al.  A flexible generative model for preference aggregation , 2012, WWW.

[36]  David F. Gleich,et al.  Rank aggregation via nuclear norm minimization , 2011, KDD.

[37]  John Guiver,et al.  Bayesian inference for Plackett-Luce ranking models , 2009, ICML '09.

[38]  Stephen P. Boyd,et al.  Mixing Times for Random Walks on Geometric Random Graphs , 2005, ALENEX/ANALCO.

[39]  Craig Boutilier,et al.  Learning Mallows Models with Pairwise Preferences , 2011, ICML.

[40]  Behrouz Touri,et al.  Novel Distance Measures for Vote Aggregation , 2012 .

[41]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[42]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[43]  P.-C.-F. Daunou,et al.  Mémoire sur les élections au scrutin , 1803 .

[44]  Thomas L. Saaty,et al.  Decision-making with the AHP: Why is the principal eigenvector necessary , 2003, Eur. J. Oper. Res..

[45]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[46]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[47]  Michael I. Jordan,et al.  On the Consistency of Ranking Algorithms , 2010, ICML.

[48]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[49]  Nicolas de Condorcet Essai Sur L'Application de L'Analyse a la Probabilite Des Decisions Rendues a la Pluralite Des Voix , 2009 .

[50]  Moshe Tennenholtz,et al.  Ranking systems: the PageRank axioms , 2005, EC '05.

[51]  Hector Garcia-Molina,et al.  The Eigentrust algorithm for reputation management in P2P networks , 2003, WWW '03.

[52]  Sebastiano Vigna,et al.  Spectral ranking , 2009, Network Science.

[53]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[54]  Devavrat Shah,et al.  Ranking: Compare, don't score , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[55]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[56]  U. Feige,et al.  Spectral techniques applied to sparse random graphs , 2005 .

[57]  K. Arrow Social Choice and Individual Values , 1951 .

[58]  Stanley Osher,et al.  Enhanced statistical rankings via targeted data collection , 2013, ICML.