Using the Full Power of the Cosmic Microwave Background to Probe Axion Dark Matter

The cosmic microwave background (CMB) places strong constraints on models of dark matter (DM) that deviate from standard cold DM (CDM), and on initial conditions beyond the scalar adiabatic mode. Here, the full \textit{Planck} data set (including temperature, $E$-mode polarisation, and lensing deflection) is used to test the possibility that some fraction of the DM is composed of ultralight axions (ULAs). This represents the first use of CMB lensing to test the ULA model. We find no evidence for a ULA component in the mass range $10^{-33}\leq m_a\leq 10^{-24}\text{ eV}$. We put percent-level constraints on the ULA contribution to the DM, improving by up to a factor of two compared to the case with temperature anisotropies alone. Axion DM also provides a low-energy window onto the high-energy physics of inflation through the interplay between the vacuum misalignment production of axions and isocurvature perturbations. We perform the first systematic investigation into the parameter space of ULA isocurvature, using an accurate isocurvature transfer function at all $m_{a}$ values. We precisely identify a "window of co-existence" for $10^{-25}\text{ eV}\leq m_a\leq10^{-24}\text{ eV}$ where the data allow, simultaneously, a $\sim10\%$ contribution of ULAs to the DM, and $\sim 1\%$ contributions of isocurvature and tensors to the CMB power. ULAs in this window (and \textit{all} lighter ULAs) are shown to be consistent with a large inflationary Hubble parameter, $H_I\sim 10^{14}\text{ GeV}$. The window of co-existence will be fully probed by proposed CMB-S4 observations with increased accuracy in the high-$\ell$ lensing power and low-$\ell$ $E$ and $B$-mode polarisation. If ULAs in the window exist, this could allow for two independent measurements of $H_I$ in the CMB using the axion DM content and isocurvature, and the tensor contribution to $B$-modes.

[1]  M. Viel,et al.  XQ-100: A legacy survey of one hundred 3.5 ≲ z ≲ 4.5 quasars observed with VLT/X-shooter , 2016, 1607.08776.

[2]  Christopher M. Hirata,et al.  First CMB constraints on direction-dependent cosmological birefringence from WMAP-7 , 2012, 1206.5546.

[3]  The QCD axion and moduli stabilisation , 2006, hep-th/0602233.

[4]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[5]  Roberto Scaramella,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living reviews in relativity.

[6]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[7]  L. Witkowski,et al.  Monodromy Dark Matter , 2016, 1605.01367.

[8]  Assisted inflation , 1998, astro-ph/9804177.

[9]  Hill,et al.  Cosmology with ultralight pseudo Nambu-Goldstone bosons. , 1995, Physical review letters.

[10]  A. Liddle,et al.  Planck satellite constraints on pseudo-Nambu-Goldstone boson quintessence , 2015, 1503.06100.

[11]  M. Kamionkowski,et al.  Cosmological tests of an axiverse-inspired quintessence field , 2016, 1603.04851.

[12]  A. Mirizzi,et al.  Axion hot dark matter bounds after Planck , 2013, 1307.0615.

[13]  H. Noh,et al.  Axion as a cold dark matter candidate: low-mass case , 2012, 1207.3124.

[14]  E. Shellard,et al.  Axion cosmology revisited , 2009, 0910.1066.

[15]  T. Chiueh,et al.  Evolution of linear wave dark matter perturbations in the radiation-dominated era , 2017, 1702.07065.

[16]  David J. Gross,et al.  QCD and instantons at finite temperature , 1981 .

[17]  A. Lewis,et al.  Weak gravitational lensing of the CMB , 2006, astro-ph/0601594.

[18]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[19]  Daniel Grin,et al.  A search for ultralight axions using precision cosmological data , 2014, 1410.2896.

[20]  Paul J. Steinhardt,et al.  Saving the invisible axion , 1983 .

[21]  Celine Boehm,et al.  Constraining dark matter-neutrino interactions using the CMB and large-scale structure , 2014, 1401.7597.

[22]  P. Ferreira,et al.  Ultralight scalar fields and the growth of structure in the Universe , 2010, 1009.3501.

[23]  A. G. Vieregg,et al.  BICEP2 / Keck Array IX: New bounds on anisotropies of CMB polarization rotation and implications for axionlike particles and primordial magnetic fields , 2017, 1705.02523.

[24]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[25]  Andreas Albrecht,et al.  Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking , 1982 .

[26]  Wayne Hu,et al.  Structure Formation with Generalized Dark Matter , 1998, astro-ph/9801234.

[27]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[28]  L. Verde,et al.  Isocurvature modes and Baryon Acoustic Oscillations , 2010, 1006.3806.

[29]  C. Wetterich,et al.  Gauge-invariant initial conditions and early time perturbations in quintessence universes , 2003, astro-ph/0304212.

[30]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS , 2012, 1212.5225.

[31]  F Scaramuzzi,et al.  Cosmology from MAXIMA-1, BOOMERANG, and COBE DMR cosmic microwave background observations. , 2001, Physical review letters.

[32]  Fabian Ruehle,et al.  Natural inflation and moduli stabilization in heterotic orbifolds , 2015, 1503.07183.

[33]  Turner,et al.  "Isothermal" density perturbations in an axion-dominated inflationary universe. , 1985, Physical review. D, Particles and fields.

[34]  Turner,et al.  Inflationary axion cosmology. , 1991, Physical review letters.

[35]  Jonathan R Goodman,et al.  Ensemble samplers with affine invariance , 2010 .

[36]  Edmund Bertschinger,et al.  Cosmological Perturbation Theory in the Synchronous and Conformal Newtonian Gauges , 1995 .

[37]  J. Weller,et al.  Large‐scale cosmic microwave background anisotropies and dark energy , 2003, astro-ph/0307104.

[38]  C. Skordis,et al.  Extensive investigation of the generalized dark matter model , 2016, 1605.00649.

[39]  R. Bingham,et al.  Exact analytical models of the streaming instability driven by intense neutrino beams , 2006 .

[40]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[41]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[42]  General primordial cosmic perturbation , 1999, astro-ph/9904231.

[43]  Matteo Viel,et al.  Lyman-alpha Constraints on Ultralight Scalar Dark Matter: Implications for the Early and Late Universe , 2017, 1708.00015.

[44]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[45]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[46]  Daniel Baumann,et al.  New Target for Cosmic Axion Searches. , 2016, Physical review letters.

[47]  Daniel Grin,et al.  Axiverse cosmology and the energy scale of inflation , 2013, 1303.3008.

[48]  D B Tanner,et al.  SQUID-based microwave cavity search for dark-matter axions. , 2009, Physical review letters.

[49]  Michael S. Turner,et al.  Coherent scalar-field oscillations in an expanding universe , 1983 .

[50]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[51]  Albert Stebbins,et al.  Statistics of cosmic microwave background polarization , 1997 .

[52]  A. González-Morales,et al.  Towards accurate cosmological predictions for rapidly oscillating scalar fields as dark matter , 2015, 1511.08195.

[53]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .

[54]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[55]  U. Seljak,et al.  Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.

[56]  C. Skordis,et al.  Fast and reliable Markov chain Monte Carlo technique for cosmological parameter estimation , 2005 .

[57]  Eric Armengaud,et al.  Constraining the mass of light bosonic dark matter using SDSS Lyman-α forest , 2017, 1703.09126.

[58]  C. Skordis,et al.  Pseudoscalar perturbations and polarization of the cosmic microwave background. , 2008, Physical review letters.

[59]  S. Weinberg A new light boson , 1978 .

[60]  G. W. Pratt,et al.  Planck 2015 results - XI. CMB power spectra, likelihoods, and robustness of parameters , 2015, 1507.02704.

[61]  Boris A. Malomed,et al.  Gravitational instability of scalar fields and formation of primordial black holes , 1985 .

[62]  R. Rattazzi,et al.  Large field excursions and approximate discrete symmetries from a clockwork axion , 2015, 1511.01827.

[63]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[64]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[65]  E. Witten,et al.  Axions In String Theory , 2006, hep-th/0605206.

[66]  Fast and reliable MCMC for cosmological parameter estimation , 2004, astro-ph/0405462.

[67]  J. Chluba,et al.  CMB spectral distortions from small-scale isocurvature fluctuations , 2013, 1304.4596.

[68]  N. Palanque-Delabrouille,et al.  Lyman-alpha forests cool warm dark matter , 2015, 1512.01981.

[69]  Renee Hlozek,et al.  Tensor Detection Severely Constrains Axion Dark Matter , 2014, 1403.4216.

[70]  L. Visinelli Light axion-like dark matter must be present during inflation , 2017, 1703.08798.

[71]  M. Srednicki Axion Couplings to Matter. 1. CP Conserving Parts , 1985 .

[72]  Early time perturbations behavior in scalar field cosmologies , 1998, astro-ph/9811156.

[73]  C. Skordis,et al.  CONSTRAINING THE PROPERTIES OF DARK MATTER WITH OBSERVATIONS OF THE COSMIC MICROWAVE BACKGROUND , 2016, 1601.05097.

[74]  Lyth Axions and inflation: Vacuum fluctuations. , 1992, Physical review. D, Particles and fields.

[75]  A. Zee,et al.  Quantum Field Theory in a Nutshell , 2003 .

[76]  G. W. Pratt,et al.  Planck 2013 results. XV. CMB power spectra and likelihood , 2013, 1303.5075.

[77]  Alexander Westphal,et al.  Monodromy in the CMB: Gravity Waves and String Inflation , 2008, 0803.3085.

[78]  E. Sezgin,et al.  Aspects of κ symmetry , 1993 .

[79]  Dark matter from an ultra-light pseudo-Goldsone-boson , 2005, hep-ph/0509257.

[80]  P. Graham,et al.  New Observables for Direct Detection of Axion Dark Matter , 2013, 1306.6088.

[81]  Frank Wilczek,et al.  NEW MACROSCOPIC FORCES , 1984 .

[82]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[83]  Turner,et al.  Cosmic and local mass density of "invisible" axions. , 1986, Physical review. D, Particles and fields.

[84]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[85]  C. Murphy,et al.  Fuzzy Dark Matter from Infrared Confining Dynamics. , 2017, Physical review letters.

[86]  Saba Sehrish,et al.  CosmoSIS: Modular cosmological parameter estimation , 2014, Astron. Comput..

[87]  Karim A. Malik,et al.  Modelling non-dust fluids in cosmology , 2012, 1207.1870.

[88]  Frank Wilczek,et al.  Axion cosmology and the energy scale of inflation , 2008, 0807.1726.

[89]  Trystyn A. M. Berg,et al.  The Lyman α forest power spectrum from the XQ-100 legacy survey , 2016, 1702.01761.

[90]  K. Griest,et al.  Supersymmetric dark matter , 1992 .

[91]  Y. Nomura,et al.  Axion Isocurvature and Magnetic Monopoles. , 2015, Physical review letters.

[92]  M. Lueker,et al.  A MEASUREMENT OF THE COSMIC MICROWAVE BACKGROUND DAMPING TAIL FROM THE 2500-SQUARE-DEGREE SPT-SZ SURVEY , 2012, 1210.7231.

[93]  Michael S. Turner,et al.  Development of axion perturbations in an axion dominated universe , 1983 .

[94]  B. Bassett,et al.  The sensitivity of BAO dark energy constraints to general isocurvature perturbations , 2011, 1111.2572.

[95]  C. Bennett,et al.  Measurement of the Cosmic Microwave Background spectrum by the COBE FIRAS instrument , 1994 .

[96]  P. A. R. Ade,et al.  A New Limit on CMB Circular Polarization from SPIDER , 2017, 1704.00215.

[97]  Matteo Viel,et al.  First Constraints on Fuzzy Dark Matter from Lyman-α Forest Data and Hydrodynamical Simulations. , 2017, Physical review letters.

[98]  D. Lyth A Bound on Inflationary Energy Density From the Isotropy of the Microwave Background , 1984 .

[99]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature , 2014, 1401.0358.

[100]  S. Kachru,et al.  N-flation , 2005, hep-th/0507205.

[101]  Guo-chin Liu,et al.  Axion Dark Matter Induced Cosmic Microwave Background $B$-modes , 2016, 1612.02104.

[102]  Kris Sigurdson,et al.  ETHOS—an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe , 2015, 1512.05344.

[103]  A. Geraci,et al.  Resonantly detecting axion-mediated forces with nuclear magnetic resonance. , 2014, Physical review letters.

[104]  Javier Pardo Vega,et al.  The QCD axion, precisely , 2015, 1511.02867.

[105]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[106]  F. Takahashi,et al.  Solving the tension between high-scale inflation and axion isocurvature perturbations , 2014, 1403.4186.

[107]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[108]  F. Takahashi,et al.  Topological defects and nano-Hz gravitational waves in aligned axion models , 2016, 1606.05552.

[109]  P. Gondolo,et al.  Axion cold dark matter in nonstandard cosmologies , 2009, 0912.0015.

[110]  Jihn E. Kim,et al.  Completing natural inflation , 2004, hep-ph/0409138.

[111]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: Final data release and cosmological results , 2012, 1210.2130.

[112]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[113]  S. Tremaine,et al.  Ultralight scalars as cosmological dark matter , 2016, 1610.08297.

[114]  Field,et al.  Limits on a Lorentz- and parity-violating modification of electrodynamics. , 1990, Physical review. D, Particles and fields.

[115]  Ren'ee Hlovzek,et al.  Future CMB tests of dark matter: Ultralight axions and massive neutrinos , 2016, 1607.08208.

[116]  B. Acharya,et al.  Spectrum of the axion dark sector , 2017, 1706.03236.

[117]  R. Peccei,et al.  CP Conservation in the Presence of Pseudoparticles , 1977 .

[118]  Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.

[119]  David H. Lyth,et al.  What Would We Learn by Detecting a Gravitational Wave Signal in the Cosmic Microwave Background Anisotropy , 1997 .

[120]  J. Lesgourgues,et al.  ournal of C osmology and A stroparticle hysics Using the CMB angular power spectrum to study Dark Matter-photon interactions , 2022 .

[121]  H. Noh,et al.  Axion as a cold dark matter candidate , 2009, 0902.4738.

[122]  Diego Harari,et al.  Effects of a Nambu-Goldstone boson on the polarization of radio galaxies and the cosmic microwave background , 1992 .

[123]  S Fiorucci,et al.  Results from a Search for Dark Matter in the Complete LUX Exposure. , 2016, Physical review letters.

[124]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[125]  Probing dark energy perturbations: The dark energy equation of state and speed of sound as measured by WMAP , 2003, astro-ph/0307100.

[126]  R. Barkana,et al.  Fuzzy cold dark matter: the wave properties of ultralight particles. , 2000, Physical review letters.