An analysis of the flexibility of Asymmetric Power GARCH models

The Asymmetric Power GARCH (APGARCH) model allows a wider class of power transformations than simply taking the absolute value or squaring the data as in classical heteroscedastic models. A dynamic estimation is used to compare the three GARCH families and examine their forecasting performances in a value-at-risk setting. The results suggest that the optimal power transformation obtained with the APGARCH model is virtually never statistically different from 1 or 2. Moreover, although some indices switch between these two values over the time, the measures of accuracy and efficiency used to assess the performance of VaR forecasts indicate that the additional flexibility brought by the APGARCH model provides little, if any, improvements for risk management.

[1]  Robert Brooks,et al.  Power ARCH modelling of commodity futures data on the London Metal Exchange , 2001 .

[2]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[3]  Robert Brooks,et al.  A multi-country study of power ARCH models and national stock market returns , 2000 .

[4]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[5]  Pierre Giot,et al.  Modelling daily value-at-risk using realized volatility and arch type models , 2001 .

[6]  Ying-Wong Cheung,et al.  Stock Price Dynamics and Firm Size: An Empirical investigation , 1992 .

[7]  Heather Mitchell,et al.  Generalized asymmetric power ARCH modelling of exchange rate volatility , 2002 .

[8]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[9]  André Berchtold,et al.  Mixture transition distribution (MTD) modeling of heteroscedastic time series , 2003, Comput. Stat. Data Anal..

[10]  H. White A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity , 1980 .

[11]  Francesco Audrino,et al.  The impact of general non-parametric volatility functions in multivariate GARCH models , 2006, Comput. Stat. Data Anal..

[12]  Heung Wong,et al.  The asymptotic convexity of the negative likelihood function of GARCH models , 2006, Comput. Stat. Data Anal..

[13]  Jose A. Lopez,et al.  Methods for Evaluating Value-at-Risk Estimates , 1998 .

[14]  Anat R. Admati,et al.  A Theory of Intraday Patterns: Volume and Price Variability , 1988 .

[15]  Stavros Degiannakis,et al.  The Use of GARCH Models in VaR Estimation , 2004 .

[16]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[17]  Kalman J. Cohen,et al.  The Returns Generation Process, Returns Variance, and the Effect of Thinness in Securities Markets , 1978 .

[18]  T. Bollerslev,et al.  Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon , 1999 .

[19]  Albert K. Tsui,et al.  Conditional Volatility in Foreign Exchange Rates: Evidence from the Malaysian Ringgit and Singapore Dollar , 1997 .

[20]  Dean P. Foster,et al.  Filtering and Forecasting with Misspecified Arch Models Ii: Making the Right Forecast with the Wrong Model , 1992 .

[21]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[22]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[23]  Juan Romo,et al.  Bootstrap prediction for returns and volatilities in GARCH models , 2006, Comput. Stat. Data Anal..

[24]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[25]  Bruno Eklund Estimating confidence regions over bounded domains , 2005, Comput. Stat. Data Anal..

[26]  Esther Ruiz,et al.  Unobserved component models with asymmetric conditional variances , 2006, Comput. Stat. Data Anal..

[27]  M. Rosenblatt Remarks on a Multivariate Transformation , 1952 .

[28]  S. Laurent,et al.  Modelling Daily Value-at-Risk Using Realized Volatility and Arch Type Models , 2001 .

[29]  Eric Hillebrand Neglecting parameter changes in GARCH models , 2005 .

[30]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[31]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[32]  Evdokia Xekalaki,et al.  Evaluating Volatility Forecasts in Option Pricing in the Context of a Simulated Options Market , 2005, Comput. Stat. Data Anal..