Properties making a chaotic system a good pseudo random number generator.

We discuss the properties making a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of Kolmogorov-Sinai entropy, high dimensionality of the parent dynamical system, and very large period of the generated sequence. We propose the multidimensional Anosov symplectic (cat) map as a pseudo random number generator. We show what chaotic features of this map are useful for generating pseudo random numbers and investigate numerically which of them survive in the discrete state version of the map. Testing and comparisons with other generators are performed.

[1]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[2]  Olbrich,et al.  Chaos or noise: difficulties of a distinction , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[3]  Grebogi,et al.  Roundoff-induced periodicity and the correlation dimension of chaotic attractors. , 1988, Physical review. A, General physics.

[4]  Stephan Mertens,et al.  Pseudo Random Coins Show More Heads Than Tails , 2003 .

[5]  P. Gaspard,et al.  Noise, chaos, and (ε,τ)-entropy per unit time , 1993 .

[6]  R. R. Coveyou,et al.  Fourier Analysis of Uniform Random Number Generators , 1967, JACM.

[7]  G. Mantica Quantum algorithmic integrability: the metaphor of classical polygonal billiards , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  F. Vivaldi,et al.  An algorithmic view of pseudochaos , 1999 .

[9]  Aaldert Compagner Definitions of randomness , 1991 .

[10]  Stephan Mertens,et al.  Entropy of pseudo-random-number generators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Bert F. Green,et al.  Empirical Tests of an Additive Random Number Generator , 1959, JACM.

[12]  Andrei N. Kolmogorov,et al.  On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.

[13]  G. Marsaglia Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[15]  D. Ruelle,et al.  Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .

[16]  I. Percival,et al.  Arithmetical properties of strongly chaotic motions , 1987 .

[17]  P. Grassberger Toward a quantitative theory of self-generated complexity , 1986 .

[18]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[19]  A. Vulpiani,et al.  Predictability: a way to characterize complexity , 2001, nlin/0101029.

[20]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[21]  Françoise Fogelman-Soulié,et al.  Disordered Systems and Biological Organization , 1986, NATO ASI Series.

[22]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[23]  Leonard A. Smith Intrinsic limits on dimension calculations , 1988 .

[24]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[25]  Antonio Politi,et al.  Unpredictable behaviour in stable systems , 1993 .

[26]  Roberto Benzi,et al.  A random process for the construction of multiaffine fields , 1993 .

[27]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[28]  Eckehard Olbrich,et al.  Coarse grained dynamical entropies: Investigation of high-entropic dynamical systems , 2000 .

[29]  Angelo Vulpiani,et al.  Coarse-grained probabilistic automata mimicking chaotic systems. , 2003, Physical review letters.

[30]  Alan M. Ferrenberg,et al.  Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.

[31]  Pierre L'Ecuyer,et al.  An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..