Properties making a chaotic system a good pseudo random number generator.
暂无分享,去创建一个
Angelo Vulpiani | Simone Pigolotti | Massimo Falcioni | Luigi Palatella | A. Vulpiani | M. Falcioni | S. Pigolotti | L. Palatella
[1] G. Zaslavsky. Chaos, fractional kinetics, and anomalous transport , 2002 .
[2] Olbrich,et al. Chaos or noise: difficulties of a distinction , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[3] Grebogi,et al. Roundoff-induced periodicity and the correlation dimension of chaotic attractors. , 1988, Physical review. A, General physics.
[4] Stephan Mertens,et al. Pseudo Random Coins Show More Heads Than Tails , 2003 .
[5] P. Gaspard,et al. Noise, chaos, and (ε,τ)-entropy per unit time , 1993 .
[6] R. R. Coveyou,et al. Fourier Analysis of Uniform Random Number Generators , 1967, JACM.
[7] G. Mantica. Quantum algorithmic integrability: the metaphor of classical polygonal billiards , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[8] F. Vivaldi,et al. An algorithmic view of pseudochaos , 1999 .
[9] Aaldert Compagner. Definitions of randomness , 1991 .
[10] Stephan Mertens,et al. Entropy of pseudo-random-number generators. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] Bert F. Green,et al. Empirical Tests of an Additive Random Number Generator , 1959, JACM.
[12] Andrei N. Kolmogorov,et al. On the Shannon theory of information transmission in the case of continuous signals , 1956, IRE Trans. Inf. Theory.
[13] G. Marsaglia. Random numbers fall mainly in the planes. , 1968, Proceedings of the National Academy of Sciences of the United States of America.
[14] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[15] D. Ruelle,et al. Fundamental limitations for estimating dimensions and Lyapunov exponents in dynamical systems , 1992 .
[16] I. Percival,et al. Arithmetical properties of strongly chaotic motions , 1987 .
[17] P. Grassberger. Toward a quantitative theory of self-generated complexity , 1986 .
[18] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .
[19] A. Vulpiani,et al. Predictability: a way to characterize complexity , 2001, nlin/0101029.
[20] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[21] Françoise Fogelman-Soulié,et al. Disordered Systems and Biological Organization , 1986, NATO ASI Series.
[22] M. Hénon,et al. A two-dimensional mapping with a strange attractor , 1976 .
[23] Leonard A. Smith. Intrinsic limits on dimension calculations , 1988 .
[24] V. I. Arnolʹd,et al. Ergodic problems of classical mechanics , 1968 .
[25] Antonio Politi,et al. Unpredictable behaviour in stable systems , 1993 .
[26] Roberto Benzi,et al. A random process for the construction of multiaffine fields , 1993 .
[27] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[28] Eckehard Olbrich,et al. Coarse grained dynamical entropies: Investigation of high-entropic dynamical systems , 2000 .
[29] Angelo Vulpiani,et al. Coarse-grained probabilistic automata mimicking chaotic systems. , 2003, Physical review letters.
[30] Alan M. Ferrenberg,et al. Monte Carlo simulations: Hidden errors from "good" random number generators. , 1992, Physical review letters.
[31] Pierre L'Ecuyer,et al. An Implementation of the Lattice and Spectral Tests for Multiple Recursive Linear Random Number Generators , 1997, INFORMS J. Comput..