Structured Random Matrices

Random matrix theory is a well-developed area of probability theory that has numerous connections with other areas of mathematics and its applications. Much of the literature in this area is concerned with matrices that possess many exact or approximate symmetries, such as matrices with i.i.d. entries, for which precise analytic results and limit theorems are available. Much less well understood are matrices that are endowed with an arbitrary structure, such as sparse Wigner matrices or matrices whose entries possess a given variance pattern. The challenge in investigating such structured random matrices is to understand how the given structure of the matrix is reflected in its spectral properties. This chapter reviews a number of recent results, methods, and open problems in this direction, with a particular emphasis on sharp spectral norm inequalities for Gaussian random matrices.

[1]  D. Spielman,et al.  Interlacing Families II: Mixed Characteristic Polynomials and the Kadison-Singer Problem , 2013, 1306.3969.

[2]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[3]  Ramon van Handel,et al.  Chaining, Interpolation, and Convexity , 2015, 1508.05906.

[4]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[5]  R. Handel On the spectral norm of Gaussian random matrices , 2015, 1502.05003.

[6]  Sjoerd Dirksen,et al.  Tail bounds via generic chaining , 2013, ArXiv.

[7]  Joel A. Tropp,et al.  An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..

[8]  Alexandra Kolla,et al.  Small Lifts of Expander Graphs are Expanding , 2013, ArXiv.

[9]  J. W. Silverstein,et al.  No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices , 1998 .

[10]  M. Talagrand Upper and Lower Bounds for Stochastic Processes , 2021, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics.

[11]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[12]  Gilles Pisier,et al.  Introduction to Operator Space Theory , 2003 .

[13]  Michael I. Jordan,et al.  Matrix concentration inequalities via the method of exchangeable pairs , 2012, 1201.6002.

[14]  V. Koltchinskii,et al.  Concentration inequalities and moment bounds for sample covariance operators , 2014, 1405.2468.

[15]  Yoav Seginer,et al.  The Expected Norm of Random Matrices , 2000, Combinatorics, Probability and Computing.

[16]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[17]  N. Tomczak-Jaegermann The moduli of smoothness and convexity and the Rademacher averages of the trace classes $S_{p}$ (1≤p<∞) , 1974 .

[18]  T. Tao,et al.  Random matrices: The Universality phenomenon for Wigner ensembles , 2012, 1202.0068.

[19]  M. Rudelson Almost orthogonal submatrices of an orthogonal matrix , 1996, math/9606213.

[20]  G. Pisier Probabilistic methods in the geometry of Banach spaces , 1986 .

[21]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[22]  S. Riemer,et al.  On the expectation of the norm of random matrices with non-identically distributed entries , 2012, 1203.3713.

[23]  Y. Gordon Some inequalities for Gaussian processes and applications , 1985 .

[24]  R. Vershynin,et al.  Covariance estimation for distributions with 2+ε moments , 2011, 1106.2775.

[25]  Sasha Sodin,et al.  The spectral edge of some random band matrices , 2009, 0906.4047.

[26]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[27]  A. Bandeira,et al.  Sharp nonasymptotic bounds on the norm of random matrices with independent entries , 2014, 1408.6185.

[28]  R. Lata,et al.  SOME ESTIMATES OF NORMS OF RANDOM MATRICES , 2004 .

[29]  T. Tao Topics in Random Matrix Theory , 2012 .

[30]  J. Tropp Second-Order Matrix Concentration Inequalities , 2015, 1504.05919.

[31]  H. Yau,et al.  Universality of local spectral statistics of random matrices , 2011, 1106.4986.