Scale-free brain activity: past, present, and future

[1]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[2]  P. Willmore,et al.  Manual of seismological observatory practice , 1979 .

[3]  B. Rockstroh Slow Brain Potentials and Behavior , 1982 .

[4]  N. Loveless Slow brain potentials and behaviour B. Rockstroh, T. Elbert, N. Birbaumer and W. Lutzenberger, (Urban and Schwarzenberg, Baltimore-Munich, 1982) pp. 271. , 1984, Biological Psychology.

[5]  B. Rockstroh,et al.  Slow potentials of the cerebral cortex and behavior. , 1990, Physiological reviews.

[6]  D. Colquhoun,et al.  Glutamate activation of a single NMDA receptorchannel produces a cluster of channel openings , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  K. H. Britten,et al.  Power spectrum analysis of bursting cells in area MT in the behaving monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Per Bak,et al.  How Nature Works , 1996 .

[11]  C. Koch,et al.  A brief history of time (constants). , 1996, Cerebral cortex.

[12]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[13]  Mu-ming Poo,et al.  Quantal Neurotransmitter Secretion Rate Exhibits Fractal Behavior , 1997, The Journal of Neuroscience.

[14]  K. Clayton,et al.  Studies of Mental “Noise” , 1997 .

[15]  Benoit B. Mandelbrot,et al.  Multifractals and 1/f noise : wild self-affinity in physics (1963-1976) : selecta volume N , 1999 .

[16]  M. Bennett,et al.  Statistics of transmitter release at nerve terminals , 2000, Progress in Neurobiology.

[17]  M. Teich,et al.  Fractal features of dark, maintained, and driven neural discharges in the cat visual system. , 1999, Methods.

[18]  T A Carpenter,et al.  Colored noise and computational inference in neurophysiological (fMRI) time series analysis: Resampling methods in time and wavelet domains , 2001, Human brain mapping.

[19]  D. Gilden Cognitive emissions of 1/f noise. , 2001, Psychological review.

[20]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations and Scaling Behavior in Human Brain Oscillations , 2001, The Journal of Neuroscience.

[21]  Steven B. Smith,et al.  Digital Signal Processing: A Practical Guide for Engineers and Scientists , 2002 .

[22]  Ranulfo Romo,et al.  Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations , 2003, Current Opinion in Neurobiology.

[23]  W. Freeman,et al.  Spatial spectra of scalp EEG and EMG from awake humans , 2003, Clinical Neurophysiology.

[24]  John M. Beggs,et al.  Neuronal Avalanches in Neocortical Circuits , 2003, The Journal of Neuroscience.

[25]  A. Destexhe,et al.  The high-conductance state of neocortical neurons in vivo , 2003, Nature Reviews Neuroscience.

[26]  D. Tank,et al.  Persistent neural activity: prevalence and mechanisms , 2004, Current Opinion in Neurobiology.

[27]  K. Linkenkaer-Hansen,et al.  Stimulus‐induced change in long‐range temporal correlations and scaling behaviour of sensorimotor oscillations , 2004, The European journal of neuroscience.

[28]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[29]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[30]  Mohamed-Jalal Fadili,et al.  Fractional Gaussian noise, functional MRI and Alzheimer's disease , 2005, NeuroImage.

[31]  Xiao-Jing Wang,et al.  A Recurrent Network Mechanism of Time Integration in Perceptual Decisions , 2006, The Journal of Neuroscience.

[32]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[33]  D. Plenz,et al.  The organizing principles of neuronal avalanches: cell assemblies in the cortex? , 2007, Trends in Neurosciences.

[34]  N. Logothetis,et al.  In Vivo Measurement of Cortical Impedance Spectrum in Monkeys: Implications for Signal Propagation , 2007, Neuron.

[35]  Xiao-Jing Wang,et al.  Cannabinoid-mediated disinhibition and working memory: dynamical interplay of multiple feedback mechanisms in a continuous attractor model of prefrontal cortex. , 2007, Cerebral cortex.

[36]  W. Freeman,et al.  Simulated power spectral density (PSD) of background electrocorticogram (ECoG) , 2008, Cognitive Neurodynamics.

[37]  J. Palva,et al.  Very Slow EEG Fluctuations Predict the Dynamics of Stimulus Detection and Oscillation Amplitudes in Humans , 2008, The Journal of Neuroscience.

[38]  R. Oostenveld,et al.  Finding Gamma , 2008, Neuron.

[39]  D. Plenz,et al.  Neuronal avalanches organize as nested theta- and beta/gamma-oscillations during development of cortical layer 2/3 , 2008, Proceedings of the National Academy of Sciences.

[40]  Biyu J. He,et al.  Electrophysiological correlates of the brain's intrinsic large-scale functional architecture , 2008, Proceedings of the National Academy of Sciences.

[41]  E. Fetz,et al.  Decoupling the Cortical Power Spectrum Reveals Real-Time Representation of Individual Finger Movements in Humans , 2009, The Journal of Neuroscience.

[42]  Arjen van Ooyen,et al.  Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease , 2009, Proceedings of the National Academy of Sciences.

[43]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[44]  C. Koch,et al.  Neuronal Shot Noise and Brownian 1/f2 Behavior in the Local Field Potential , 2008, PloS one.

[45]  S. Frank The common patterns of nature , 2009, Journal of evolutionary biology.

[46]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[47]  J. Assad,et al.  Beyond Poisson: Increased Spike-Time Regularity across Primate Parietal Cortex , 2009, Neuron.

[48]  Pierre Yger,et al.  Network-State Modulation of Power-Law Frequency-Scaling in Visual Cortical Neurons , 2009, PLoS Comput. Biol..

[49]  Jeffrey G. Ojemann,et al.  Power-Law Scaling in the Brain Surface Electric Potential , 2009, PLoS Comput. Biol..

[50]  Jeremy R. Manning,et al.  Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans , 2009, The Journal of Neuroscience.

[51]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[52]  Biyu J. He,et al.  The fMRI signal, slow cortical potential and consciousness , 2009, Trends in Cognitive Sciences.

[53]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[54]  Philippe Séguéla,et al.  Metabotropic induction of persistent activity in layers II/III of anterior cingulate cortex. , 2010, Cerebral cortex.

[55]  Gaute T. Einevoll,et al.  Intrinsic dendritic filtering gives low-pass power spectra of local field potentials , 2010, Journal of Computational Neuroscience.

[56]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[57]  Claude Bédard,et al.  Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media , 2010, Journal of Computational Neuroscience.

[58]  Rajesh P. N. Rao,et al.  Dynamic Modulation of Local Population Activity by Rhythm Phase in Human Occipital Cortex During a Visual Search Task , 2010, Front. Hum. Neurosci..

[59]  Denis Rubin,et al.  Power spectrum scale invariance quantifies limbic dysregulation in trait anxious adults using fMRI: Adapting methods optimized for characterizing autonomic dysregulation to neural dynamic time series , 2010, NeuroImage.

[60]  Christopher T. Kello,et al.  Scaling laws in cognitive sciences , 2010, Trends in Cognitive Sciences.

[61]  Claude Bédard,et al.  Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media , 2010, Journal of Computational Neuroscience.

[62]  Daniel P. Kennedy,et al.  Differential electrophysiological response during rest, self-referential, and non–self-referential tasks in human posteromedial cortex , 2011, Proceedings of the National Academy of Sciences.

[63]  J. Maunsell,et al.  Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex , 2011, PLoS biology.

[64]  Klaus Linkenkaer-Hansen,et al.  Scale-Free Modulation of Resting-State Neuronal Oscillations Reflects Prolonged Brain Maturation in Humans , 2011, The Journal of Neuroscience.

[65]  Biyu J. He Scale-Free Properties of the Functional Magnetic Resonance Imaging Signal during Rest and Task , 2011, The Journal of Neuroscience.

[66]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[67]  Woodrow L. Shew,et al.  Information Capacity and Transmission Are Maximized in Balanced Cortical Networks with Neuronal Avalanches , 2010, The Journal of Neuroscience.

[68]  Stefano Panzeri,et al.  The Laminar and Temporal Structure of Stimulus Information in the Phase of Field Potentials of Auditory Cortex , 2011, The Journal of Neuroscience.

[69]  Juan R. Vidal,et al.  Transient Suppression of Broadband Gamma Power in the Default-Mode Network Is Correlated with Task Complexity and Subject Performance , 2011, The Journal of Neuroscience.

[70]  P. Abry,et al.  Scale-Free and Multifractal Time Dynamics of fMRI Signals during Rest and Task , 2012, Front. Physio..

[71]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[72]  M. Porter,et al.  Critical Truths About Power Laws , 2012, Science.

[73]  A. Litwin-Kumar,et al.  Slow dynamics and high variability in balanced cortical networks with clustered connections , 2012, Nature Neuroscience.

[74]  R. VanRullen,et al.  An oscillatory mechanism for prioritizing salient unattended stimuli , 2012, Trends in Cognitive Sciences.

[75]  Frances K Skinner,et al.  Inhibitory Networks of Fast-Spiking Interneurons Generate Slow Population Activities due to Excitatory Fluctuations and Network Multistability , 2012, The Journal of Neuroscience.

[76]  D. Heeger,et al.  Slow Cortical Dynamics and the Accumulation of Information over Long Timescales , 2012, Neuron.

[77]  M. Kahana,et al.  Phase–Amplitude Coupling in Human Electrocorticography Is Spatially Distributed and Phase Diverse , 2012, The Journal of Neuroscience.

[78]  L. Fadiga,et al.  Origins of 1/f2 scaling in the power spectrum of intracortical local field potential. , 2012, Journal of neurophysiology.

[79]  K. Linkenkaer-Hansen,et al.  Critical-State Dynamics of Avalanches and Oscillations Jointly Emerge from Balanced Excitation/Inhibition in Neuronal Networks , 2012, The Journal of Neuroscience.

[80]  D. Plenz,et al.  Balance between excitation and inhibition controls the temporal organization of neuronal avalanches. , 2012, Physical review letters.

[81]  Rui Yan,et al.  Identifying major depressive disorder using Hurst exponent of resting-state brain networks , 2013, Psychiatry Research: Neuroimaging.

[82]  H. Laufs,et al.  Breakdown of long-range temporal dependence in default mode and attention networks during deep sleep , 2013, Proceedings of the National Academy of Sciences.

[83]  Dieter Jaeger,et al.  Infraslow LFP correlates to resting-state fMRI BOLD signals , 2013, NeuroImage.

[84]  K. Linkenkaer-Hansen,et al.  Long-Range Temporal Correlations in Resting-State Alpha Oscillations Predict Human Timing-Error Dynamics , 2013, The Journal of Neuroscience.

[85]  U. Knoblich,et al.  Optogenetic drive of neocortical pyramidal neurons generates fMRI signals that are correlated with spiking activity , 2013, Brain Research.

[86]  Stefano Panzeri,et al.  Modelling and analysis of local field potentials for studying the function of cortical circuits , 2013, Nature Reviews Neuroscience.

[87]  Kristofer E. Bouchard,et al.  Functional Organization of Human Sensorimotor Cortex for Speech Articulation , 2013, Nature.

[88]  Sampsa Vanhatalo,et al.  Early development of spatial patterns of power-law frequency scaling in FMRI resting-state and EEG data in the newborn brain. , 2013, Cerebral cortex.

[89]  K. Linkenkaer-Hansen,et al.  Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws , 2013, Proceedings of the National Academy of Sciences.

[90]  N. Logothetis,et al.  Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms , 2013, Neuron.