Nonlinear elasticity of silica nanofiber

Optical nanofibers (ONFs) are excellent nanophotonic platforms for various applications such as optical sensing, quantum and nonlinear optics, due to both the tight optical confinement and their wide evanescent field in the sub-wavelength limit. Other remarkable features of these ultrathin fibers are their surface acoustic properties and their high tensile strength. Here we investigate Brillouin light scattering in silica-glass tapered optical fibers under high tensile strain and show that the fundamental properties of elastic waves dramatically change due to elastic anisotropy and nonlinear elasticity for strain larger than 2%. This yields to unexpected and remarkable Brillouin strain coefficients for all Brillouin resonances including surface and hybrid waves, followed by a nonlinear evolution at high tensile strength. We further provide a complete theoretical analysis based on third-order nonlinear elasticity of silica that remarkably agrees with our experimental data. These new regimes open the way to the development of compact tensile strain optical sensors based on nanofibers.

[1]  Thibaut Sylvestre,et al.  Brillouin spectroscopy of optical microfibers and nanofibers , 2017 .

[2]  Liping Huang,et al.  Nonlinear Elasticity of Silica Glass , 2016 .

[3]  C. Cordeiro,et al.  Brillouin scattering self-cancellation , 2016, Nature Communications.

[4]  V. M. Prokhorov,et al.  Second- and third-order elastic coefficients in polycrystalline aluminum alloy AMg6 , 2015, Acoustical Physics.

[5]  J Laurat,et al.  Demonstration of a memory for tightly guided light in an optical nanofiber. , 2015, Physical review letters.

[6]  A. Rauschenbeutel,et al.  Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms , 2015, 1502.01151.

[7]  Audrey Dot,et al.  Power-efficient production of photon pairs in a tapered chalcogenide microwire , 2015, 1501.03532.

[8]  Thibaut Sylvestre,et al.  Brillouin light scattering from surface acoustic waves in a subwavelength-diameter optical fibre , 2014, Nature Communications.

[9]  Thomas Hoinkes,et al.  Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist , 2014, 1401.6056.

[10]  Jose M. Lopez-Higuera,et al.  Brillouin Distributed Fiber Sensors: An Overview and Applications , 2012, J. Sensors.

[11]  V. Laude,et al.  Electrostriction and guidance of acoustic phonons in optical fibers , 2012, 1207.2998.

[12]  Limin Tong,et al.  Subwavelength and Nanometer Diameter Optical Fibers , 2010 .

[13]  M. Sauer,et al.  Stimulated Brillouin scattering in optical fibers , 2010 .

[14]  G. Brambilla,et al.  Optical fibre nanowires and microwires: a review , 2010 .

[15]  Michal Lipson,et al.  Nonlinear optics in photonic nanowires. , 2008, Optics express.

[16]  F. Honarvar,et al.  Wave propagation in transversely isotropic cylinders , 2004, IEEE Ultrasonics Symposium, 2004.

[17]  K. Ogusu,et al.  Tensile-strain coefficient of resonance frequency of depolarized guided acoustic-wave Brillouin scattering , 1999, IEEE Photonics Technology Letters.

[18]  L. Thévenaz,et al.  Simple distributed fiber sensor based on Brillouin gain spectrum analysis. , 1996, Optics letters.

[19]  E Suhir,et al.  Predicted stresses and strains in fused biconical taper couplers subjected to tension. , 1993, Applied optics.

[20]  T. Birks,et al.  Shape of fiber tapers , 1992 .

[21]  T. Horiguchi,et al.  A technique to measure distributed strain in optical fibers , 1990, IEEE Photonics Technology Letters.

[22]  D. Jackson,et al.  Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors , 1989 .

[23]  T. Horiguchi,et al.  Tensile strain dependence of Brillouin frequency shift in silica optical fibers , 1989, IEEE Photonics Technology Letters.

[24]  G. Stegeman,et al.  Brillouin Scattering from Surface Phonons in Thin Films , 1978 .

[25]  J. Pelous,et al.  Temperature dependence of velocity and attenuation of 16 GHz transverse hypersound in fused quartz by Brillouin scattering , 1975 .

[26]  M. Breazeale,et al.  Adiabatic third‐order elastic constants of fused silica , 1973 .

[27]  M. Skove,et al.  Combinations of Fourth‐Order Elastic Constants of Fused Quartz , 1970 .

[28]  Alan S. Pine,et al.  Brillouin Scattering Study of Acoustic Attenuation in Fused Quartz , 1969 .

[29]  E. H. Bogardus Third‐Order Elastic Constants of Ge, MgO, and Fused SiO2 , 1965 .

[30]  D. S. Hughes,et al.  Second-Order Elastic Deformation of Solids , 1953 .

[31]  Limin Tong,et al.  Subwavelength-diameter silica wires for low-loss optical wave guiding , 2003, Nature.

[32]  Eugène Dieulesaint,et al.  Elastic Waves in Solids II , 2000 .

[33]  H. Senin,et al.  Temperature dependences of the third-order elastic constants and acoustic mode vibrational anharmonicity of vitreous silica , 1992 .

[34]  L. Brillouin Les tenseurs en mécanique et en élasticité , 1987 .

[35]  J. Pelous,et al.  Thermal Brillouin scattering in crystalline and fused quartz from 20 to 1000°C , 1976 .

[36]  L. Brillouin Les lois de l’élasticité sous forme tensoreille valable pour des coordonnées quelconques , 1925 .

[37]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .