On-Line Coloring and Recursive Graph Theory
暂无分享,去创建一个
Hal A. Kierstead | William T. Trotter | Stephen G. Penrice | H. Kierstead | W. T. Trotter | S. Penrice
[1] András Gyárfás,et al. On-line and first fit colorings of graphs , 1988, J. Graph Theory.
[2] H. Kierstead. Recursive Colorings of Highly Recursive Graphs , 1981, Canadian Journal of Mathematics - Journal Canadien de Mathematiques.
[3] Henry A. Kierstead,et al. An effective version of Dilworth’s theorem , 1981 .
[4] D. R. Lick,et al. The Theory and Applications of Graphs. , 1983 .
[5] James H. Schmerl. Recursive colorings of graphs , 1980 .
[6] J. Schmerl. The Effective Version of Brooks' Theorem , 1982, Canadian Journal of Mathematics.
[7] Endre Szemerédi,et al. Induced subtrees in graphs of large chromatic number , 1980, Discret. Math..
[8] P. Erdos,et al. On chromatic number of graphs and set-systems , 1966 .
[9] Henry A. Kierstead. An effective version of Hall’s theorem , 1983 .
[10] Hal A. Kierstead,et al. Radius two trees specify χ-bounded classes , 1994, J. Graph Theory.
[11] V. Chvátal. Perfectly Ordered Graphs , 1984 .