Stratospheric aerosol particles and solar-radiation management

[1]  J. Holton,et al.  Chapter 12 – Middle Atmosphere Dynamics , 2013 .

[2]  P. Davidson,et al.  Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Andrew Charlton-Perez,et al.  Stratospheric heating by potential geoengineering aerosols , 2011 .

[4]  R. Neely,et al.  The Persistently Variable “Background” Stratospheric Aerosol Layer and Global Climate Change , 2011, Science.

[5]  Charles E Kolb,et al.  Update 1 of: Mass accommodation and chemical reactions at gas-liquid interfaces. , 2011, Chemical reviews.

[6]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[7]  C. Timmreck,et al.  The dependency of geoengineered sulfate aerosol on the emission strategy , 2011 .

[8]  I. Jones Geoengineering the climate , 2011 .

[9]  Charles E. Kolb,et al.  An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds , 2010 .

[10]  Jonathan I. Katz,et al.  Stratospheric albedo modification , 2010 .

[11]  Gareth Davies,et al.  Geoengineering the Climate: Science, Governance and Uncertainty , 2010 .

[12]  David W Keith,et al.  Photophoretic levitation of engineered aerosols for geoengineering , 2010, Proceedings of the National Academy of Sciences.

[13]  Ben Kravitz,et al.  A Test for Geoengineering? , 2010, Science.

[14]  D. Weisenstein,et al.  The impact of geoengineering aerosols on stratospheric temperature and ozone , 2009 .

[15]  Ben Kravitz,et al.  Benefits, risks, and costs of stratospheric geoengineering , 2009 .

[16]  P. Braesicke,et al.  Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM , 2009 .

[17]  R. Socolow,et al.  Climate Engineering Responses to Climate Emergencies , 2009, 0907.5140.

[18]  S. Brönnimann,et al.  Interannual-to-decadal variability of the stratosphere during the 20th century: ensemble simulations with a chemistry-climate model , 2008 .

[19]  P. Rasch,et al.  An overview of geoengineering of climate using stratospheric sulphate aerosols , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  Paul J. Crutzen,et al.  Exploring the geoengineering of climate using stratospheric sulfate aerosols: The role of particle size , 2008 .

[21]  M. Rossi Evaluated kinetic and photochemical data for atmospheric chemistry , 2010 .

[22]  N. Stern The Economics of Climate Change: Implications of Climate Change for Development , 2007 .

[23]  P. Crutzen Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? , 2006 .

[24]  D. Worsnop,et al.  Mass accommodation and chemical reactions at gas-liquid interfaces. , 2006, Chemical reviews.

[25]  W. Rose,et al.  Re‐evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors , 2004 .

[26]  Philip R. Goode,et al.  Earthshine and the Earth's albedo: 2. Observations and simulations over 3 years , 2003 .

[27]  C. Tropea,et al.  Light Scattering from Small Particles , 2003 .

[28]  Alan Robock,et al.  Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. , 2002, Science.

[29]  D. Fussen,et al.  Evolution of stratospheric aerosols in the post-Pinatubo period measured by solar occultation , 2001 .

[30]  Stanley C. Solomon,et al.  Stratospheric ozone depletion: A review of concepts and history , 1999 .

[31]  Mahoney,et al.  In situ measurements of organics, meteoritic material, mercury, and other elements in aerosols at 5 to 19 kilometers , 1998, Science.

[32]  O. Boucher On Aerosol Direct Shortwave Forcing and the Henyey-Greenstein Phase Function. , 1998 .

[33]  M. Molina,et al.  The reaction of ClONO2 with HCl on aluminum oxide , 1997 .

[34]  Stratospheric aerosol following Pinatubo, comparison of the north and south mid latitudes using in situ measurements , 1997 .

[35]  M. Molina,et al.  GAS-PHASE AND HETEROGENEOUS CHEMICAL KINETICS OF THE TROPOSPHERE AND STRATOSPHERE , 1996 .

[36]  Larry W. Thomason,et al.  Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses , 1996 .

[37]  R. Garcia,et al.  The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes , 1996 .

[38]  A. Lambert,et al.  Stratospheric aerosol effective radius, surface area and volume estimated from infrared measurements , 1995 .

[39]  D. Eatough,et al.  Conversion of SO2 to Sulfate in the Atmosphere , 1995 .

[40]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[41]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[42]  C. Trepte,et al.  A climatology of stratospheric aerosol , 1994 .

[43]  D. R. Hanson,et al.  Reactive Uptake of ClONO2 onto Sulfuric Acid Due to Reaction with HCl and H2O , 1994 .

[44]  E. Mahieu,et al.  Heterogeneous conversion of N2O5 to HNO3 in the post‐Mount Pinatubo eruption stratosphere , 1994 .

[45]  P. Pilewskie,et al.  Pinatubo and pre‐Pinatubo optical‐depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data , 1993 .

[46]  A. Lambert,et al.  Infrared absorption by volcanic stratospheric aerosols observed by ISAMS , 1993 .

[47]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[48]  P. Minnis,et al.  Radiative Climate Forcing by the Mount Pinatubo Eruption , 1993, Science.

[49]  Makiko Sato,et al.  Potential climate impact of Mount Pinatubo eruption , 1992 .

[50]  C. Bohren,et al.  An introduction to atmospheric radiation , 1981 .