Hardware-in-the-loop simulation of interval type-2 fuzzy PD controller for uncertain nonlinear system using low cost microcontroller

Abstract Hardware-in-the-loop simulation is increasingly being required for the design, implementation and testing of control systems, where some of the control loop components are real hardware and some are simulated. Usually, the real system is software and the control system is hardware. In this study, hardware-in-the-loop simulation is used to test the performance of the interval type-2 fuzzy proportional-derivative (IT2F-PD) controller. The IT2F-PD controller is implemented using a low cost microcontroller for controlling the uncertain nonlinear inverted pendulum. The IT2F-PD controller is able to handle the system uncertainties better than their type-1 (T1) counterparts. The results of the IT2F-PD controller are compared with the T1F-PD controller. The experimental results show that the IT2F-PD controller is made significantly improved the performance over a wide range of the structural uncertainties and the effect of the external disturbances.

[1]  Y. Wang,et al.  A Type-2 Fuzzy Switching Control System for Biped Robots , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  E. Martin,et al.  Control strategies for hardware-in-the-loop simulation of flexible space robots , 2000 .

[3]  M. Steurer,et al.  A novel approach to power quality assessment: real time hardware-in-the-loop test bed , 2005, IEEE Transactions on Power Delivery.

[4]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[5]  Rolf Isermann,et al.  Hardware-in-the-loop simulation for the design and testing of engine-control systems , 1998 .

[6]  G. Stoeppler,et al.  Hardware-in-the-loop simulation of machine tools and manufacturing systems , 2005 .

[7]  Mohammad Hossein Fazel Zarandi,et al.  A new indirect approach to the type-2 fuzzy systems modeling and design , 2013, Inf. Sci..

[8]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[9]  Yi-Min Li,et al.  Type-2 T–S fuzzy impulsive control of nonlinear systems , 2012 .

[10]  Yijun Du,et al.  Indirect adaptive fuzzy observer and controller design based on interval type-2 T–S fuzzy model , 2012 .

[11]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[12]  Kuo-Jung Lin,et al.  Stabilization of uncertain fuzzy control systems via a new descriptor system approach , 2012, Comput. Math. Appl..

[13]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[14]  Jerry Mendel,et al.  Type-2 Fuzzy Sets and Systems: An Overview [corrected reprint] , 2007, IEEE Computational Intelligence Magazine.

[15]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[16]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[17]  Türkay Dereli,et al.  Industrial applications of type-2 fuzzy sets and systems: A concise review , 2011, Comput. Ind..

[18]  B M Hanson,et al.  Hardware-in-the-loop-simulation of the cardiovascular system, with assist device testing application. , 2007, Medical engineering & physics.

[19]  Woei Wan Tan,et al.  Analytical Structure and Characteristics of Symmetric Karnik–Mendel Type-Reduced Interval Type-2 Fuzzy PI and PD Controllers , 2012, IEEE Transactions on Fuzzy Systems.

[20]  Zhiming Zhang,et al.  A novel approach to multi attribute group decision making based on trapezoidal interval type-2 fuzzy soft sets , 2013 .

[21]  Li Yimin,et al.  Type-2 fuzzy mathematical modeling and analysis of the dynamical behaviors of complex ecosystems , 2008, Simul. Model. Pract. Theory.

[22]  Yasar Becerikli,et al.  Fuzzy control of inverted pendulum and concept of stability using Java application , 2007, Math. Comput. Model..

[23]  Engin Yesil,et al.  Interval type-2 fuzzy inverse controller design in nonlinear IMC structure , 2011, Eng. Appl. Artif. Intell..

[24]  Ahmad M. El-Nagar,et al.  Practical Implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller , 2014 .

[25]  Oscar Castillo,et al.  Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA , 2012, Appl. Soft Comput..

[26]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[27]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems: type-reduction , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[28]  Hani Hagras,et al.  Using Uncertainty Bounds in the Design of an Embedded Real-Time Type-2 Neuro-Fuzzy Speed Controller for Marine Diesel Engines , 2006, 2006 IEEE International Conference on Fuzzy Systems.

[29]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[30]  Fevrier Valdez,et al.  Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot , 2012, Inf. Sci..

[31]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[32]  Ahmad M. El-Nagar,et al.  Direct adaptive interval type-2 fuzzy logic controller for the multivariable anaesthesia system , 2011 .

[33]  Ahmad M. El-Nagar,et al.  Practical Realization for the Interval Type-2 Fuzzy PD+I Controller Using a Low-Cost Microcontroller , 2014 .

[34]  Jerry M. Mendel,et al.  Centroid of a type-2 fuzzy set , 2001, Inf. Sci..

[35]  Oscar Castillo,et al.  Optimal design of interval type 2 fuzzy controllers based on a simple tuning algorithm , 2014, Appl. Soft Comput..

[36]  M.R. Emami,et al.  An Architecture for Robotic Hardware-in-the-Loop Simulation , 2006, 2006 International Conference on Mechatronics and Automation.

[37]  Hani Hagras,et al.  Interval Type-2 Fuzzy Logic Congestion Control for Video Streaming Across IP Networks , 2009, IEEE Transactions on Fuzzy Systems.

[38]  Alexander Viehweider,et al.  Stabilization of Power Hardware-in-the-Loop simulations of electric energy systems , 2011, Simul. Model. Pract. Theory.

[39]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[40]  Tarek Tutunji,et al.  Hardware-In-the-Loop for on-line identification and control of three-phase squirrel cage induction motors , 2010, Simul. Model. Pract. Theory.

[41]  Warren E. Dixon,et al.  A hardware in the loop simulation platform for vision-based control of unmanned air vehicles , 2009 .

[42]  Ahmad M. El-Nagar,et al.  Interval type-2 fuzzy neural network controller for a multivariable anesthesia system based on a hardware-in-the-loop simulation , 2014, Artif. Intell. Medicine.