The effect of metal dispersion on the resonance of antennas at infrared frequencies
暂无分享,去创建一个
[1] Andrea Alù,et al. Tuning the scattering response of optical nanoantennas with nanocircuit loads , 2008 .
[2] Gábor Matyi. Nanoantennas for uncooled, double-band, CMOS compatible, high-speed infrared sensors , 2004, Int. J. Circuit Theory Appl..
[3] James C. Ginn,et al. Characterizing Infrared Frequency Selective Surfaces on Dispersive Media , 2007 .
[4] E. Palik. Handbook of Optical Constants of Solids , 1997 .
[5] J. R. James. Magical microwaves: the exploitation of the century , 1989 .
[6] William L. Schaich,et al. Measurement of the resonant lengths of infrared dipole antennas , 2000 .
[7] R. J. Bell,et al. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.
[8] F. J. González,et al. Comparison of dipole, bowtie, spiral and log-periodic IR antennas , 2005 .
[9] R. J. Bell,et al. Optical properties of Au, Ni, and Pb at submillimeter wavelengths. , 1987, Applied optics.
[10] D. P. Starinshak,et al. Using COMSOL Multiphysics software to model anisotropic dielectric and metamaterial effects in folded-waveguide traveling-wave tube slow-wave circuits , 2008, 2008 IEEE International Vacuum Electronics Conference.
[11] Lukas Novotny,et al. Effective wavelength scaling for optical antennas. , 2007, Physical review letters.
[12] Alessandro Salandrino,et al. Coupling of optical lumped nanocircuit elements and effects of substrates. , 2007, Optics express.
[13] Andrea Alù,et al. Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas. , 2007, Physical review letters.
[14] Annemarie Pucci,et al. Resonances of individual metal nanowires in the infrared , 2006 .