Electron emission from the single-electron capture with simultaneous single ionization in 30 keV/u He{sup 2+} on argon was investigated using a reaction microscope, providing the electron energy spectra and momentum distributions. Intensive peaks for electrons with near-zero kinetic energies have been observed. It is demonstrated that mechanisms contributing to the electron emission include direct transfer ionization (DTI), double-electron capture with autoionization (DECA), and single-electron capture with autoionization (SECA) of target. Comparison of resonance energies shows that Ar{sup +} ions in SECA decay mainly through the 3s3p{sup 5}3d states by emitting Auger electrons, and He** in DECA decay through the 2l2l' states. The dependence of electron emission on the transverse momentum exchange has been studied. In the transfer ionization channel studied here, the DTI process dominates the electron emission, and no saddle point electron mechanism has been found.