Tropospheric Tomography using GPS Estimated Slant Delays

Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network. In the lower atmosphere both the small height and time scales and the non-dispersive nature of tropospheric delays require a more careful analysis of the data. We show how GPS data is processed to obtain the tropospheric slant delays using the GIPSY-OASIS II software and define the concept of pseudo-wet delays, which will be the observables in the tomographic software. We then discuss the inverse problem in the 3D stochastic tomography, using simulated refractivity fields to test the system and the impact of noise. Finally, we use data from the Kilauea network in Hawaii and a local 4x4x41-voxel grid on a region of 400 Km and 15 Km in height to produce 4D refractivity fields. Results are compared with ECMWF forecast.