Radiation Damage Theory

This chapter presents an overview of basic radiation damage theory, including older and more recent models, to provide framework, within which radiation effects, such as void swelling, can be rationalized. A complete review of the literature is not attempted, but sufficient references are given to provide a decent introduction to a quite large number of publications in the field. Many derivations are different from and, in our view, more elegant than in the original publications. The work is directed to both theoreticians and experimentalists, and, especially, to those passionate individuals who are going to take the radiation damage theory (RDT) to the future.

[1]  U. Gösele,et al.  Steady-state diffusion of point defects to dislocation loops , 1977 .

[2]  M. Hernández-Mayoral,et al.  Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. , 2009 .

[3]  F. Ham Stress‐Assisted Precipitation on Dislocations , 1959 .

[4]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[5]  The mechanism of stress influence on swelling of 20% cold-worked 16Cr15Ni2MoTiMnSi steel , 2007 .

[6]  P. Maziasz,et al.  Void-precipitate association during neutron irradiation of austenitic stainless steel , 1987 .

[7]  D. Mazey,et al.  Observation of a partially-ordered void lattice in aluminium irradiated with 400 keV Al+ ions , 1973 .

[8]  Stability and Mobility of Interstitial-Type Defect Clusters Generated from Displacement Cascades in Copper and Gold by In-Situ Transmission Electron Microscopy , 2005 .

[9]  M. Surh,et al.  Master equation and Fokker–Planck methods for void nucleation and growth in irradiation swelling , 2004 .

[10]  G. Vineyard,et al.  THE DYNAMICS OF RADIATION DAMAGE , 1960 .

[11]  A. Serra,et al.  Thermally activated glide of small dislocation loops in metals , 1999 .

[12]  K. M. Miller,et al.  Point defect sink strengths in irradiated materials , 1977 .

[13]  M. Speight,et al.  Steady-state irradiation creep , 1974 .

[14]  W. Wolfer The Dislocation Bias , 2007 .

[15]  R. E. Jamison,et al.  Radiation hardening of copper single crystals , 1960 .

[16]  E. E. Bloom,et al.  Void formation in irradiated Nickel 270 , 1971 .

[17]  A. Seeger,et al.  Zur Deutung der Tieftemperatur-Elektronenbestrahlung in Metallen. II. Kinetik der Crowdion-Leerstellen-Annihilation und der Erholungsstufe IE in Kupfer† , 1965 .

[18]  S. Golubov,et al.  On the onset of void ordering in metals under neutron or heavy-ion irradiation , 2010 .

[19]  A. Brailsford Diffusion to a random array of identical spherical sinks , 1976 .

[20]  A. Horsewell,et al.  Void hyperlattices in high-purity aluminium irradiated with fast neutrons , 1987 .

[21]  N. phil. II. On the theory of the decrease of velocity of moving electrified particles on passing through matter , 1913 .

[22]  U. Gösele,et al.  Theory of bimolecular reaction rates limited by anisotropic diffusion , 1976 .

[23]  U. Gösele,et al.  Extension of the Unsaturable Trap Model to One-Dimensional Interstitial Migration , 1974 .

[24]  R. S. Nelson,et al.  Void formation in nickel during 20 MeV C++ irradiation at 525 °C , 1971 .

[25]  Eal H. Lee,et al.  High temperature radiation damage phenomena in complex alloys , 1982 .

[26]  F. Garner,et al.  Saturation of swelling in neutron-irradiated molybdenum and its dependence on irradiation temperature and starting microstructural state , 1994 .

[27]  B. Singh Atomic displacements and defect accumulation during irradiation with energetic particles , 1999 .

[28]  J. Frankel Kinetic theory of liquids , 1946 .

[29]  T. Leffers,et al.  The temperature dependence of void and bubble formation and growth in aluminium during 600 MeV proton irradiation , 1984 .

[30]  K. C. Russell Nucleation of voids in irradiated metals , 1971 .

[31]  C. Woo Irradiation creep due to elastodiffusion , 1984 .

[32]  Steven J. Zinkle,et al.  Kinetics of coarsening of helium bubbles during implantation and post-implantation annealing , 2007 .

[33]  K. M. Miller Dislocation bias and point-defect relaxation volumes , 1979 .

[34]  B. Loomis,et al.  Void ordering in ion-irradiated Nb and Nb-1% Zr , 1977 .

[35]  L. K. Mansur,et al.  Irradiation creep by climb-enabled glide of dislocations resulting from preferred absorption of point defects , 1979 .

[36]  A. Foreman,et al.  Production bias and void swelling in the transient regime under cascade damage conditions , 1992 .

[37]  Stanislav I Golubov,et al.  Stability and mobility of defect clusters and dislocation loops in metals , 2000 .

[38]  A. Cottrell,et al.  LXXXI. Annealing of point defects in metals and alloys , 1955 .

[39]  M. R. Hayns,et al.  The nucleation and early growth of interstitial dislocation loops in irradiated materials , 1975 .

[40]  C. Woo,et al.  The Concept of Production Bias and Its Possible Role in Defect Accumulation under Cascade Damage Conditions , 1990 .

[41]  A. Kohyama,et al.  In-situ observation of void swelling in molybdenum alloys by means of high voltage electron microscopy , 1981 .

[42]  B. N. Singh Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel , 1974 .

[43]  M. Kiritani,et al.  Analysis of the Clustering Process of Supersaturated Lattice Vacancies , 1973 .

[44]  H. Trinkaus,et al.  Glide of interstitial loops produced under cascade damage conditions: Possible effects on void formation , 1992 .

[45]  T. Leffers,et al.  Grain boundary related effects in aluminium during 600 MeV proton irradiation at different temperatures , 1984 .

[46]  Mychailo B. Toloczko,et al.  Comparison of swelling and irradiation creep behavior of fcc-austenitic and bcc-ferritic/martensitic alloys at high neutron exposure , 2000 .

[47]  J. H. Evans,et al.  Observations of a Regular Void Array in High Purity Molybdenum irradiated with 2 MeV Nitrogen Ions , 1971, Nature.

[48]  L. Mansur Theory and experimental background on dimensional changes in irradiated alloys , 1994 .

[49]  J. Katz,et al.  Nucleation of Voids in Materials Supersaturated with Vacancies and Interstitials , 1971 .

[50]  T. Leffers,et al.  Formation of cavities at and away from grain boundaries during 600 MeV proton irradiation , 1982 .

[51]  G. Brebec,et al.  Influence de la dose de neutrons rapides sur la formation des cavites dans l'aluminium , 1975 .

[52]  A. Serra,et al.  Aspects of microstructure evolution under cascade damage conditions , 1997 .

[53]  G. Walters The electron irradiation of pure FeCrNi alloys in the temperature range 400 to 700° C , 1985 .

[54]  A. Horsewell,et al.  Diffusion Mechanisms for Enhanced Vacancy Accumulation Near Planar Sinks , 1987 .

[55]  R S Pease,et al.  REVIEW ARTICLES: The Displacement of Atoms in Solids by Radiation , 1955 .

[56]  H. Wiedersich On the theory of void formation during irradiation , 1972 .

[57]  C. Woo,et al.  Production bias and cluster annihilation: Why necessary? , 1994 .

[58]  S. Golubov,et al.  Unlimited damage accumulation in metallic materials under cascade-damage conditions , 2009 .

[59]  A. Serra,et al.  Structure and properties of clusters of self-interstitial atoms in fcc copper and bcc iron , 2000 .

[60]  R. Stoller,et al.  A comparison of displacement cascades in copper and iron by molecular dynamics and its application to microstructural evolution , 1995 .

[61]  E. J. Fulton,et al.  Voids in Irradiated Stainless Steel , 1967, Nature.

[62]  T. Yoshiie,et al.  Recoil energy spectrum analysis and impact effect of cascade and subcascade in 14 MeV D-T fusion neutron irradiated FCC metals , 1990 .

[63]  H. Trinkaus,et al.  1D to 3D diffusion-reaction kinetics of defects in crystals , 2002 .

[64]  Stanislav I Golubov,et al.  Defect accumulation in fcc and bcc metals and alloys under cascade damage conditions – Towards a generalisation of the production bias model , 2000 .

[65]  T. Leffers,et al.  Effects of heterogeneous sink distribution on void swelling , 1986 .

[66]  T. Williams,et al.  The effects of silicon and titanium on void swelling and phase transformations in neutron irradiated 12Cr-15Ni steels , 1988 .

[67]  M. Ashkin,et al.  Diffusion of vacancies and interstitials to edge dislocations , 1976 .

[68]  M. Robinson,et al.  A proposed method of calculating displacement dose rates , 1975 .

[69]  B. Eyre,et al.  Low-dose neutron irradiation damage in copper: II. Damage-structure evolution at elevated temperatures , 1987 .

[70]  Stanislav I Golubov,et al.  One-dimensional atomic transport by clusters of self-interstitial atoms in iron and copper , 2003 .

[71]  G. W. Greenwood,et al.  An analysis of the diffusion of fission gas bubbles and its effect on the behaviour of reactor fuels , 1963 .

[72]  J. Evans Observations of a regular void array in high purity molybdenum and T.Z.M. irradiated at high temperatures with 2MeV nitrogen ions , 1971 .

[73]  S. Zinkle,et al.  Defect accumulation in pure fcc metals in the transient regime: a review , 1993 .

[74]  B. N. Singh,et al.  Grouping method for the approximate solution of a kinetic equation describing the evolution of point-defect clusters , 2001 .

[75]  N. Soneda,et al.  Defect production, annealing kinetics and damage evolution in α-Fe: An atomic-scale computer simulation , 1998 .

[76]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[77]  Masahiro Koiwa,et al.  On the Validity of the Grouping Method —Comments on "Analysis of the Clustering Process of Supersaturated Lattice Vacancies"— , 1974 .

[78]  H. Trinkaus,et al.  Radiation hardening revisited: role of intracascade clustering , 1997 .

[79]  R. Stoller,et al.  The effects of helium implantation on microstructural evolution in an austenitic alloy , 1988 .

[80]  R. Bullough,et al.  The rate theory of swelling due to void growth in irradiated metals , 1972 .

[81]  C. Woo,et al.  Production bias due to clustering of point defects in irradiation-induced cascades , 1992 .

[82]  H. Heinisch,et al.  On the structure of irradiation-induced collision cascades in metals as a function of recoil energy and crystal structure , 1993 .

[83]  A. Risbet,et al.  Ordre de cavites dans le magnesium et l'aluminium irradies aux neutrons rapides , 1974 .

[84]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[85]  A. Barbu,et al.  Microstructure modelling of ferritic alloys under high flux 1 MeV electron irradiations , 2002 .

[86]  J. Willis,et al.  The stress-induced point defect-dislocation interaction and its relevance to irradiation creep , 1975 .

[87]  A. Hamberg Die radioaktiven Substanzen und die geologische Forschung , 1913 .

[88]  V. Borodin Rate theory for one-dimensional diffusion , 1998 .

[89]  E. Wigner Theoretical Physics in the Metallurgical Laboratory of Chicago , 1946 .

[90]  S. Golubov,et al.  Progress in modelling the microstructural evolution in metals under cascade damage conditions , 2000 .

[91]  C. English,et al.  Molecular ion irradiations of molybdenum , 2010 .

[92]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[93]  K. Laidler,et al.  Development of transition-state theory , 1983 .

[94]  D. Bacon,et al.  Defect production due to displacement cascades in metals as revealed by computer simulation , 1997 .

[95]  Mark T. Robinson,et al.  Basic physics of radiation damage production , 1994 .

[96]  C. Domain,et al.  Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models , 2008 .

[97]  B. N. Singh,et al.  On recoil-energy-dependent defect accumulation in pure copper Part II. Theoretical treatment , 2001 .

[98]  W. Frank,et al.  The interpretation of electron radiation damage in F.C.C. metals in terms of the conversion-two-interstitial model , 1969 .

[99]  P. Hähner,et al.  Self-Organization of Defect Structures under High-Temperature Irradiation-A Theory of Void Lattices , 1992 .

[100]  C. English,et al.  Insight into Cascade Processes Arising from Studies of Cascade Collapse , 1987 .

[101]  F. Garner,et al.  Evolution of microstructure in face-centered cubic metals during irradiation , 1993 .

[102]  L. Glowinski Etude de la formation des cavites d'irradiation dans le cuivre I-irradiation aux electrons de 1 MeV , 1976 .

[103]  R. Stoller,et al.  Dissociation of migrating particle from trap with long-range interaction field , 2010 .

[104]  T. D. Rubia,et al.  Irradiation-Induced Defect Production in Elemental Metals and Semiconductors: A Review of Recent Molecular Dynamics Studies , 1996 .

[105]  F. C. Goodrich Nucleation rates and the kinetics of particle growth I. The pure birth process , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[106]  H. Matsui,et al.  Obstacles for one-dimensional migration of interstitial clusters in iron , 2009 .

[107]  C. Woo,et al.  GMIC++: Grouping method in C++: an efficient method to solve large number of Master equations ✩ , 2003 .

[108]  K. Farrell,et al.  Heterogeneous distribution of irradiation voids in iron , 1970 .

[109]  R. J. White,et al.  The preferential trapping of interstitials at dislocations: II. The effect of competition between neighbouring dislocations , 1976 .

[110]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[111]  J. Evans,et al.  Significant differences in defect accumulation behaviour between fcc and bcc crystals under cascade damage conditions , 1995 .

[112]  B. N. Singh Damage production, accumulation and materials performance in radiation environment , 1999 .

[113]  G. W. Greenwood,et al.  The role of vacancies and dislocations in the nucleation and growth of gas bubbles in irradiated fissile material , 1959 .

[114]  M. Speight,et al.  The influence of cascade damage on irradiation creep and swelling , 1977 .

[115]  H. Trinkaus,et al.  Defect ordering in metals under irradiation , 1993 .

[116]  S. Golubov,et al.  Steady-state size distribution of voids in metals under cascade irradiation , 2009 .

[117]  A. F. Rowcliffe,et al.  Need for and requirements for a neutron irradiation facility for fusion materials testing , 1989 .

[118]  B. N. Singh,et al.  Calculated grain size-dependent vacancy supersaturation and its effect on void formation , 1974 .

[119]  Hirotaro Mori,et al.  Observation of the One-Dimensional Diffusion of Nanometer-Sized Dislocation Loops , 2007, Science.

[120]  N. Ghoniem,et al.  A NUMERICAL SOLUTION TO THE FOKKER-PLANCK EQUATION DESCRIBING THE EVOLUTION OF THE INTERSTITIAL LOOP MICROSTRUCTURE DURING IRRADIATION , 1980 .

[121]  D. Norris The use of the high voltage electron microscope to simulate fast neutron-induced void swelling in metals , 1971 .

[122]  Robert W. Cahn,et al.  Materials science and technology : a comprehensive treatment , 2000 .

[123]  M. Eldrup,et al.  Study of defect annealing behaviour in neutron irradiated Cu and Fe using positron annihilation and electrical conductivity , 2000 .

[124]  R. J. White,et al.  The preferential trapping of interstitials at dislocations , 1975 .

[125]  A. Horsewell,et al.  Dislocation and void segregation in copper during neutron irradiation , 1986 .

[126]  S. Golubov,et al.  Reaction kinetics of glissile interstitial clusters in a crystal containing voids and dislocations , 2001 .

[127]  C. Clement,et al.  Equations for the growth of a distribution of small physical objects , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[128]  L. S. Ozhigov,et al.  Cavity formation in aluminium irradiated with a pulsating beam of 225 MeV electrons , 1984 .

[129]  B. L. Eyre,et al.  Cascade damage effects on the swelling of irradiated materials , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[130]  Roger E. Stoller,et al.  MD description of damage production in displacement cascades in copper and α-iron , 2003 .

[131]  A. I. Bondarenko,et al.  Void growth kinetics in irradiated metals , 1976 .

[132]  B. N. Singh,et al.  Impact of glissile interstitial loop production in cascades on defect accumulation in the transient , 1993 .

[133]  B. Eyre Transmission electron microscope studies of point defect clusters in fcc and bcc metals , 1973 .

[134]  F. C. Goodrich Nucleation rates and the kinetics of particle growth II. The birth and death process , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[135]  A. Horsewell,et al.  Effects of fission neutron and 600 MeV proton irradiations on microstructural evolution in OFHC-copper , 1994 .

[136]  J. L. Brimhall,et al.  PRODUCTION OF VOIDS IN NICKEL WITH HIGH ENERGY SELENIUM IONS. , 1971 .

[137]  S. Zinkle,et al.  Void swelling and defect cluster formation in reactor-irradiated copper☆ , 1989 .

[138]  B. N. Singh,et al.  Segregation of cascade induced interstitial loops at dislocations: possible effect on initiation of plastic deformation , 1997 .

[139]  C. Woo Correlation between void swelling and SIPA creep , 1995 .

[140]  P. Ehrhart,et al.  On recoil energy dependent void swelling in pure copper Part I. Experimental results , 2000 .

[141]  D. Bacon,et al.  On the origin of large interstitial clusters in displacement cascades , 2010 .

[142]  A. Brailsford,et al.  Point defect sink strengths and void-swelling , 1976 .

[143]  Frederick Seitz,et al.  Radiation effects in solids , 1952 .

[144]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .