Advanced Feature Recognition and Classification Using Artificial Intelligence Paradigms

[1]  Joseph D. Bronzino,et al.  The Biomedical Engineering Handbook , 1995 .

[2]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[3]  Aapo Hyvärinen,et al.  A Fast Fixed-Point Algorithm for Independent Component Analysis , 1997, Neural Computation.

[4]  Jonathan E. Fieldsend,et al.  The Bayesian Decision Tree Technique with a Sweeping Strategy , 2005, ArXiv.

[5]  D. Shulman,et al.  Regularization of discontinuous flow fields , 1989, [1989] Proceedings. Workshop on Visual Motion.

[6]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[7]  R. B. Barreiro,et al.  Isotropic wavelets: a powerful tool to extract point sources from cosmic microwave background maps , 1999, astro-ph/9912471.

[8]  Guy Marchal,et al.  Computer-aided diagnosis in virtual colonography via combination of surface normal and sphere fitting methods , 2002, European Radiology.

[9]  Joachim Schult,et al.  A neural-network technique to learn concepts from electroencephalograms , 2005, Theory in Biosciences.

[10]  Alexis Gourdon,et al.  Computing the Differential Characteristics of Isointensity Surfaces , 1995, Comput. Vis. Image Underst..

[11]  J. Cardoso,et al.  Component separation for Cosmic Microwave Background data: a blind approach based on spectral diversity , 2003, astro-ph/0302078.

[12]  Kevin H. Knuth,et al.  Bayesian source separation and localization , 1998, Optics & Photonics.

[13]  L. Toffolatti,et al.  Predicted Planck extragalactic point-source catalogue , 2001, astro-ph/0104077.

[14]  M. Morrin,et al.  Screening virtual colonoscopy--ready for prime time? , 2003, The New England journal of medicine.

[15]  Eric Moulines,et al.  A blind source separation technique using second-order statistics , 1997, IEEE Trans. Signal Process..

[16]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission , 2003, astro-ph/0302208.

[17]  Simon Prunet,et al.  Multifrequency Wiener filtering of cosmic microwave background data with polarization , 1999 .

[18]  Joyoni Dey,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < , 2022 .

[19]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[20]  Robert M. Nishikawa,et al.  Eliminating false-positive microcalcification clusters in a mammography CAD scheme using a Bayesian neural network , 2001, SPIE Medical Imaging.

[21]  Leon O. Chua,et al.  Genetic algorithm for CNN template learning , 1993 .

[22]  Brian D. Ripley,et al.  Neural Networks and Related Methods for Classification , 1994 .

[23]  Krysia Broda,et al.  Symbolic knowledge extraction from trained neural networks: A sound approach , 2001, Artif. Intell..

[24]  Olivier Monga,et al.  Using Partial Derivatives of 3D Images to Extract Typical Surface Features , 1995, Comput. Vis. Image Underst..

[25]  Hagai Attias,et al.  Independent Factor Analysis , 1999, Neural Computation.

[26]  Ercan E. Kuruoglu,et al.  Astrophysical Source Separation Using Particle Filters , 2004, ICA.

[27]  A. Dachman,et al.  CT colonography: the next colon screening examination? , 2000, Radiology.

[28]  J. Malley,et al.  Computer-assisted detection of colonic polyps with CT colonography using neural networks and binary classification trees. , 2002, Medical physics.

[29]  Gabriele Lohmann,et al.  Volumetric image analysis , 1998 .

[30]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[31]  Pedro M. Domingos Bayesian Averaging of Classifiers and the Overfitting Problem , 2000, ICML.

[32]  H. Chipman,et al.  Bayesian CART Model Search , 1998 .

[33]  R. Jeffrey,et al.  Computed Tomography Colonography: Feasibility of Computer-Aided Polyp Detection in a “First Reader” Paradigm , 2004, Journal of computer assisted tomography.

[34]  Emanuele Salerno,et al.  Independent component analysis approach to detect the cosmic microwave background radiation from satellite measurements , 2000 .

[35]  George S. Moschytz,et al.  Cellular Neural Networks , 2000 .

[36]  Maryellen L. Giger,et al.  Ideal observer approximation using Bayesian classification neural networks , 2001, IEEE Transactions on Medical Imaging.

[37]  J. Jackson,et al.  Meta-Analysis: Computed Tomographic Colonography , 2005, Annals of Internal Medicine.

[38]  P. Utgoff,et al.  Multivariate Decision Trees , 1995, Machine Learning.

[39]  Damjan Zazula,et al.  Application of simulated annealing to biosignal classification and segmentation , 2002, Proceedings of 15th IEEE Symposium on Computer-Based Medical Systems (CBMS 2002).

[40]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[41]  M. Hobson,et al.  All-sky component separation for the Planck mission , 2001, astro-ph/0105432.

[42]  Marek Franaszek,et al.  Multiple neural network classification scheme for detection of colonic polyps in CT colonography data sets. , 2003, Academic radiology.

[43]  D J Vining,et al.  Automatic segmentation of the colon for virtual colonoscopy. , 2000, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[44]  Kenneth J. Pope,et al.  Blind Signal Separation I. Linear, Instantaneous Combinations: I. Linear, Instantaneous Combinations , 1996, Digit. Signal Process..

[45]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[46]  Damjan Zazula,et al.  Automated analysis of a sequence of ovarian ultrasound images. Part I: segmentation of single 2D images , 2002, Image Vis. Comput..

[47]  Zhengrong Liang,et al.  Reconstruction and visualization of 3D models of colonic surface , 1997 .

[48]  Vitaly Schetinin A Learning Algorithm for Evolving Cascade Neural Networks , 2004, Neural Processing Letters.

[49]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[50]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[51]  Hichem Snoussi,et al.  Blind separation of noisy Gaussian stationary sources. Application to cosmic microwave background imaging , 2002, 2002 11th European Signal Processing Conference.

[52]  C. Baccigalupi,et al.  Extracting cosmic microwave background polarization from satellite astrophysical maps , 2002, astro-ph/0209591.

[53]  D. Zazula,et al.  Measurement of perifollicular blood flow of the dominant preovulatory follicle using three‐dimensional power Doppler , 2003, Ultrasound in obstetrics & gynecology : the official journal of the International Society of Ultrasound in Obstetrics and Gynecology.

[54]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[55]  H. Yoshida,et al.  Automated detection of polyps with CT colonography: evaluation of volumetric features for reduction of false-positive findings. , 2002, Academic radiology.

[56]  Steven Salzberg,et al.  A Decision Tree System for Finding Genes in DNA , 1998, J. Comput. Biol..

[57]  Anna Tonazzini,et al.  Source separation in noisy astrophysical images modelled by Markov random fields , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[58]  Sing-Tze Bow,et al.  Pattern recognition and image preprocessing , 1992 .

[59]  Max Tegmark,et al.  Foregrounds and Forecasts for the Cosmic Microwave Background , 2000 .

[60]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[61]  Chitra Dorai,et al.  COSMOS - A Representation Scheme for 3D Free-Form Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  C. H. Lineweaver,et al.  Applications of Wavelets to the Analysis of Cosmic Microwave Background Maps , 1999, astro-ph/9903206.

[63]  Richard M. Everson,et al.  Particle Filters for Non-Stationary ICA , 2000 .

[64]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[65]  Terry S. Yoo,et al.  Insight into Images: Principles and Practice for Segmentation, Registration, and Image Analysis , 2004 .

[66]  Larry S. Davis,et al.  Parallel algorithms for image enhancement and segmentation by region growing, with an experimental study , 1996, Proceedings of International Conference on Parallel Processing.

[67]  Hiroyuki Yoshida,et al.  New high-performance CAD scheme for the detection of polyps in CT colonography , 2004, SPIE Medical Imaging.

[68]  Aapo Hyvärinen,et al.  Independent component analysis in the presence of Gaussian noise by maximizing joint likelihood , 1998, Neurocomputing.

[69]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[70]  Allan Kardec Barros,et al.  Extraction of Specific Signals with Temporal Structure , 2001, Neural Computation.

[71]  S. Ipson,et al.  A full-disk image standardisation of the synoptic solar observations at the Meudon Observatory , 2003 .

[72]  A. M. Youssef,et al.  Automated polyp detection at CT colonography: feasibility assessment in a human population. , 2001, Radiology.

[73]  Hubert Harrer Discrete time cellular neural networks , 1992, Int. J. Circuit Theory Appl..

[74]  M. Girolami,et al.  Advances in Independent Component Analysis , 2000, Perspectives in Neural Computing.

[75]  David G. Stork,et al.  Pattern Classification , 1973 .

[76]  Akio Ushida,et al.  Adaptive Simulated Annealing in CNN Template Learning , 1999 .

[77]  Christopher Holmes,et al.  Bayesian Methods for Nonlinear Classification and Regressing , 2002 .

[78]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[79]  L. Ingber Very fast simulated re-annealing , 1989 .

[80]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[81]  Christopher M. Bishop,et al.  Neural Network for Pattern Recognition , 1995 .

[82]  James V. Stone,et al.  Spatiotemporal Independent Component Analysis of Event-Related fMRI Data Using Skewed Probability Density Functions , 2002, NeuroImage.

[83]  Ishwar K. Sethi,et al.  Structure-driven induction of decision tree classifiers through neural learning , 1997, Pattern Recognit..

[84]  R. Jeffrey,et al.  Automated polyp detector for CT colonography: feasibility study. , 2000, Radiology.

[85]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[86]  H. Yoshida,et al.  CAD techniques, challenges, andcontroversies in computed tomographic colonography , 2004, Abdominal Imaging.

[87]  Carlo Tomasi,et al.  Edge displacement field-based classification for improved detection of polyps in CT colonography , 2002, IEEE Transactions on Medical Imaging.

[88]  Damjan Zazula,et al.  Segmentation Of Ovarian Ultrasound Images Using Cellular Neural Networks , 2004, Int. J. Pattern Recognit. Artif. Intell..

[89]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[90]  Eric Moulines,et al.  Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[91]  Jonathan E. Fieldsend,et al.  Bayesian inductively learned modules for safety critical systems , 2003 .

[92]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[93]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[94]  L. Lathauwer,et al.  Signal Processing based on Multilinear Algebra , 1997 .

[95]  Andrzej Cichocki,et al.  Adaptive blind signal and image processing , 2002 .

[96]  A. Lasenby,et al.  Foreground separation methods for satellite observations of the cosmic microwave background , 1998, astro-ph/9806387.

[97]  Allan Kardec Barros,et al.  The Independence Assumption: Dependent Component Analysis , 2000 .

[98]  Gheorghe Iordanescu,et al.  Automated seed placement for colon segmentation in computed tomography colonography. , 2005, Academic radiology.

[99]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[100]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[101]  A. Mohammad-Djafari A Bayesian approach to source separation , 2000, math-ph/0008025.

[102]  Leon O. Chua,et al.  Cellular Neural Networks and Visual Computing: Foundations and Applications , 2002 .

[103]  J J Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[104]  Hiroyuki Yoshida,et al.  Computer-aided diagnosis for CT colonography. , 2004, Seminars in ultrasound, CT, and MR.

[105]  Michael I. Jordan,et al.  Tree-dependent Component Analysis , 2002, UAI.

[106]  Anna Tonazzini,et al.  A Markov model for blind image separation by a mean-field EM algorithm , 2006, IEEE Transactions on Image Processing.

[107]  Kari Torkkola,et al.  Blind separation of delayed sources based on information maximization , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[108]  Pedro M. Domingos Knowledge Discovery Via Multiple Models , 1998, Intell. Data Anal..

[109]  Ling Guan,et al.  Adaptive Image Processing: A Computational Intelligence Perspective , 2001 .

[110]  S. J. Press,et al.  Robustness of bayesian factor analysis estimates , 1998 .

[111]  Carlo Tomasi,et al.  A statistical 3-D pattern processing method for computer-aided detection of polyps in CT colonography , 2001, IEEE Transactions on Medical Imaging.

[112]  Jean-Franois Cardoso High-Order Contrasts for Independent Component Analysis , 1999, Neural Computation.

[113]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[114]  Hiroyuki Yoshida,et al.  Computer-aided diagnosis scheme for detection of polyps at CT colonography. , 2002, Radiographics : a review publication of the Radiological Society of North America, Inc.

[115]  H. Snoussi,et al.  Bayesian blind component separation for Cosmic Microwave Background observations , 2001 .

[116]  R. B. Barreiro,et al.  Foreground separation using a flexible maximum-entropy algorithm: an application to COBE data , 2004 .

[117]  C. Baccigalupi,et al.  Neural networks and the separation of cosmic microwave background and astrophysical signals in sky maps , 2000, astro-ph/0002257.

[118]  Rami Qahwaji,et al.  Detection of Closed Regions in Digital Images , 2001, Int. J. Comput. Their Appl..

[119]  Charles E. Metz Fundamental ROC Analysis , 2000 .

[120]  Hiroyuki Yoshida,et al.  Automated Knowledge-Guided Segmentation of Colonic Walls for Computerized Detection of Polyps in CT Colonography , 2002, Journal of computer assisted tomography.

[121]  S. Astley,et al.  Computer-aided detection in mammography. , 2004, Clinical radiology.

[122]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[123]  G. Zotti,et al.  All-sky astrophysical component separation with Fast Independent Component Analysis (FastICA) , 2001, astro-ph/0108362.

[124]  S. Pizer,et al.  The Image Processing Handbook , 1994 .

[125]  Hans Frimmel,et al.  Centerline-based colon segmentation for CT colonography. , 2005, Medical physics.

[126]  Hiroyuki Yoshida,et al.  Automated Segmentation of Colonic Walls for Computerized Detection of Polyps in CT Colonography , 2001, Journal of computer assisted tomography.

[127]  Leon O. Chua,et al.  Cellular Neural Networks and Visual Computing , 2002 .

[128]  Stephen I. Gallant,et al.  Neural network learning and expert systems , 1993 .

[129]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[130]  K. Nomizu,et al.  Foundations of Differential Geometry , 1963 .

[131]  J. Cardoso,et al.  Multidetector multicomponent spectral matching and applications for cosmic microwave background data analysis , 2002, astro-ph/0211504.

[132]  Anna Tonazzini,et al.  Bayesian MRF-based blind source separation of convolutive mixtures of images , 2005, 2005 13th European Signal Processing Conference.

[133]  Valentina V. Zharkova,et al.  A recognition of filaments in solar images with an artificial neural network , 2003, ESANN.

[134]  C. Baccigalupi,et al.  Separation of Correlated Astrophysical Sources Using Multiple-Lag Data Covariance Matrices , 2004, EURASIP J. Adv. Signal Process..

[135]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[136]  Leon O. Chua,et al.  Methods for image processing and pattern formation in Cellular Neural Networks: a tutorial , 1995 .

[137]  Hong Li,et al.  Automatic Colon Segmentation with Dual Scan CT Colonography , 2005, Journal of Digital Imaging.

[138]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[139]  Bin Li,et al.  A novel approach to extract colon lumen from CT images for virtual colonoscopy , 2000, IEEE Transactions on Medical Imaging.

[140]  P. Arena,et al.  Cellular neural networks : chaos, complexity and VLSI processing , 1999 .

[141]  A. N. Lasenby,et al.  All-sky component separation in the presence of anisotropic noise and dust temperature variations , 2004 .

[142]  A. Loncar,et al.  SCNN 2000. I. Basic structure and features of the simulation system for cellular neural networks , 2000, Proceedings of the 2000 6th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2000) (Cat. No.00TH8509).

[143]  Y. Masutani,et al.  Computerized detection of colonic polyps at CT colonography on the basis of volumetric features: pilot study. , 2002, Radiology.

[144]  B. Levin,et al.  Emerging Technologies in Screening for Colorectal Cancer: CT Colonography, Immunochemical Fecal Occult Blood Tests, and Stool Screening Using Molecular Markers , 2003, CA: a cancer journal for clinicians.

[145]  Stanley J. Farlow,et al.  Self-Organizing Methods in Modeling: Gmdh Type Algorithms , 1984 .

[146]  Hiroyuki Yoshida,et al.  Feature-guided analysis for reduction of false positives in CAD of polyps for computed tomographic colonography. , 2003, Medical physics.

[147]  Thomas Bäck,et al.  Selective Pressure in Evolutionary Algorithms: A Characterization of Selection Mechanisms , 1994, International Conference on Evolutionary Computation.

[148]  Hiroyuki Yoshida,et al.  Virtual endoscopic visualization of the colon by shape-scale signatures , 2005, IEEE Transactions on Information Technology in Biomedicine.

[149]  L. Toffolatti,et al.  The Planck Surveyor mission: astrophysical prospects , 1998 .

[150]  L. Spaanenburg,et al.  License plate recognition using DTCNNs , 1998, 1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359).

[151]  Christophe Andrieu,et al.  On-line non-stationary ICA using mixture models , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[152]  Randy L. Haupt,et al.  Practical Genetic Algorithms , 1998 .

[153]  C. Andrieu,et al.  A Particle Filter for Model Based Audio Source Separation , 2000 .

[154]  Hiroyuki Yoshida,et al.  Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps , 2001, IEEE Transactions on Medical Imaging.

[155]  Hiroyuki Yoshida,et al.  Evaluation of the effect of CAD on observers' performance in detection of polyps in CT colonography , 2004, CARS.

[156]  V. Schetinin,et al.  Filament Recognition In Solar Images With The Neural Network Technique , 2005 .

[157]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[158]  Aapo Hyvärinen,et al.  Gaussian moments for noisy independent component analysis , 1999, IEEE Signal Processing Letters.

[159]  Arie Yeredor,et al.  Non-orthogonal joint diagonalization in the least-squares sense with application in blind source separation , 2002, IEEE Trans. Signal Process..

[160]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[161]  G. Winkler,et al.  Noise Reduction in Images: Some Recent Edge-Preserving Methods , 1998 .