The importance of efflux pumps in bacterial antibiotic resistance.

Efflux pumps are transport proteins involved in the extrusionof toxic substrates (including virtually all classes of clinicallyrelevant antibiotics) from within cells into the externalenvironment. These proteins are found in both Gram-positiveand -negative bacteria as well as in eukaryotic organisms.

[1]  S. Levy,et al.  Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon , 1997, Antimicrobial agents and chemotherapy.

[2]  G. Kaatz,et al.  Inducible NorA-mediated multidrug resistance in Staphylococcus aureus , 1995, Antimicrobial agents and chemotherapy.

[3]  P. Pomposiello,et al.  Identification of SoxS-Regulated Genes inSalmonella enterica Serovar Typhimurium , 2000, Journal of bacteriology.

[4]  Michael E. Johnson,et al.  Multiple Novel Inhibitors of the NorA Multidrug Transporter of Staphylococcus aureus , 1999, Antimicrobial Agents and Chemotherapy.

[5]  S. Bloomfield,et al.  Biocide abuse and antimicrobial resistance: being clear about the issues. , 2002, The Journal of antimicrobial chemotherapy.

[6]  H. Schweizer,et al.  Cross-Resistance between Triclosan and Antibiotics inPseudomonas aeruginosa Is Mediated by Multidrug Efflux Pumps: Exposure of a Susceptible Mutant Strain to Triclosan Selects nfxB Mutants Overexpressing MexCD-OprJ , 2001, Antimicrobial Agents and Chemotherapy.

[7]  Angela Lee,et al.  Interplay between Efflux Pumps May Provide Either Additive or Multiplicative Effects on Drug Resistance , 2000, Journal of bacteriology.

[8]  A. Fraise Biocide abuse and antimicrobial resistance--a cause for concern? , 2002, The Journal of antimicrobial chemotherapy.

[9]  K. Poole Efflux-Mediated Resistance to Fluoroquinolones in Gram-Negative Bacteria , 2000, Antimicrobial Agents and Chemotherapy.

[10]  Angela Lee,et al.  Identification and Characterization of Inhibitors of Multidrug Resistance Efflux Pumps in Pseudomonas aeruginosa: Novel Agents for Combination Therapy , 2001, Antimicrobial Agents and Chemotherapy.

[11]  K. Poole,et al.  The MexR Repressor of the mexAB-oprM Multidrug Efflux Operon in Pseudomonas aeruginosa: Characterization of Mutations Compromising Activity , 2002, Journal of bacteriology.

[12]  E. Balzi,et al.  Antibiotic efflux pumps. , 2000, Biochemical pharmacology.

[13]  R. England,et al.  Increased expression of the multidrug efflux genes acrAB occurs during slow growth of Escherichia coli. , 2002, FEMS microbiology letters.

[14]  H. Nikaido,et al.  Active efflux of bile salts by Escherichia coli , 1997, Journal of bacteriology.

[15]  M H Saier,et al.  Phylogeny of multidrug transporters. , 2001, Seminars in cell & developmental biology.

[16]  I. Paulsen,et al.  Proton-dependent multidrug efflux systems , 1996, Microbiological reviews.

[17]  S. Levy,et al.  Non-Target Gene Mutations in the Development of Fluoroquinolone Resistance in Escherichia coli , 2000, Antimicrobial Agents and Chemotherapy.

[18]  D. Livermore,et al.  Role of efflux pump(s) in intrinsic resistance of Pseudomonas aeruginosa: resistance to tetracycline, chloramphenicol, and norfloxacin , 1994, Antimicrobial Agents and Chemotherapy.

[19]  L. Piddock,et al.  Identification and molecular characterisation of CmeB, a Campylobacter jejuni multidrug efflux pump. , 2002, FEMS microbiology letters.

[20]  D. Hooper,et al.  Cross-Resistance toFluoroquinolones inMultiple- Antibiotic-Resis tant (Mar)Escherichia coli Selected byTetracycline orChloramphenicol: Decreased DrugAccumulation Associated with MembraneChanges inAddition toOmpFReduction , 1989 .

[21]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[22]  J. Hearst,et al.  The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals , 1996, Molecular microbiology.

[23]  K. Nelson,et al.  Comparative genomics of microbial drug efflux systems. , 2001, Journal of molecular microbiology and biotechnology.

[24]  P. Markham Inhibition of the Emergence of Ciprofloxacin Resistance in Streptococcus pneumoniae by the Multidrug Efflux Inhibitor Reserpine , 1999, Antimicrobial Agents and Chemotherapy.

[25]  K. Poole Efflux-Mediated Resistance to Fluoroquinolones in Gram-Positive Bacteria and the Mycobacteria , 2000, Antimicrobial Agents and Chemotherapy.

[26]  S. Levy,et al.  Ineffectiveness of Topoisomerase Mutations in Mediating Clinically Significant Fluoroquinolone Resistance inEscherichia coli in the Absence of the AcrAB Efflux Pump , 2000, Antimicrobial Agents and Chemotherapy.

[27]  S. Levy,et al.  Genetic Characterization of Highly Fluoroquinolone-Resistant Clinical Escherichia coli Strains from China: Role ofacrR Mutations , 2001, Antimicrobial Agents and Chemotherapy.

[28]  S. Levy Antibacterial household products: cause for concern. , 2001, Emerging infectious diseases.

[29]  R. Wise,et al.  Identification of an Efflux Pump Gene,pmrA, Associated with Fluoroquinolone Resistance inStreptococcus pneumoniae , 1999, Antimicrobial Agents and Chemotherapy.

[30]  H. Nikaido Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria. , 2001, Seminars in cell & developmental biology.

[31]  M. Webber,et al.  Absence of Mutations in marRAB or soxRS inacrB-Overexpressing Fluoroquinolone-Resistant Clinical and Veterinary Isolates of Escherichia coli , 2001, Antimicrobial Agents and Chemotherapy.

[32]  T Spitzer,et al.  Reply , 1998, Bone Marrow Transplantation.