Isoperimetric inequalities in simplicial complexes
暂无分享,去创建一个
[1] János Pach. A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..
[2] Alexander Lubotzky,et al. Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.
[3] Joel Friedman,et al. A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.
[4] Art M. Duval,et al. Simplicial matrix-tree theorems , 2008, 0802.2576.
[5] Nikhil Srivastava,et al. Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[6] Fan Chung,et al. Spectral Graph Theory , 1996 .
[7] P. Erdos,et al. On the evolution of random graphs , 1984 .
[8] E. Berger,et al. Eigenvalues and homology of flag complexes and vector representations of graphs , 2003 .
[9] B. Eckmann. Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .
[10] Joel Friedman,et al. Expanding graphs contain all small trees , 1987, Comb..
[11] Matthew Kahle,et al. Coboundary expanders , 2010, 1012.5316.
[12] R. Meshulam,et al. Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.
[13] Jirí Matousek,et al. On Gromov’s Method of Selecting Heavily Covered Points , 2011, Discret. Comput. Geom..
[14] R. Oliveira. Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.
[15] M. Murty. Ramanujan Graphs , 1965 .
[16] Alexander Lubotzky,et al. Expander graphs in pure and applied mathematics , 2011, 1105.2389.
[17] Caroline J. Klivans,et al. A Cheeger-Type Inequality on Simplicial Complexes , 2012, Adv. Appl. Math..
[18] Noga Alon,et al. On the second eigenvalue of a graph , 1991, Discret. Math..
[19] Nathan Linial,et al. Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..
[20] M. Gromov. Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .
[21] Anna Gundert,et al. Higher dimensional discrete Cheeger inequalities , 2014, J. Comput. Geom..
[22] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[23] Oliver Vornberger,et al. The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..
[24] R. M. Tanner. Explicit Concentrators from Generalized N-Gons , 1984 .
[25] Daniel A. Spielman,et al. Fault diagnosis in a small constant number of parallel testing rounds , 1993, SPAA '93.
[26] Nathan Linial,et al. Homological Connectivity Of Random 2-Complexes , 2006, Comb..
[27] Joel Friedman,et al. A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.
[28] Victor Reiner,et al. Combinatorial Laplacians of matroid complexes , 1999 .
[29] S. Janson. On concentration of probability , 2000 .
[30] Noga Alon,et al. Explicit construction of linear sized tolerant networks , 1988, Discret. Math..
[31] Anna Gundert,et al. On laplacians of random complexes , 2012, SoCG '12.
[32] A. Zuk,et al. La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres , 1996 .
[33] Noga Alon,et al. Eigenvalues and expanders , 1986, Comb..
[34] J. Dodziuk. Finite-difference approach to the Hodge theory of harmonic forms , 1976 .
[35] B. Bollobás. The evolution of random graphs , 1984 .
[36] Yuri Rabinovich,et al. On multiplicative λ-approximations and some geometric applications , 2012, SODA.
[37] Anna Gundert,et al. Higher Dimensional Cheeger Inequalities , 2014, SoCG.
[38] Avi Wigderson,et al. On the second eigenvalue of hypergraphs , 1995, Comb..
[39] F. Chung. The Laplacian of a Hypergraph. , 1992 .
[40] N. Wallach,et al. Homological connectivity of random k-dimensional complexes , 2009 .
[41] János Pach,et al. Overlap properties of geometric expanders , 2011, SODA '11.
[42] Alan M. Frieze,et al. Random graphs , 2006, SODA '06.
[43] N. Linial,et al. Expander Graphs and their Applications , 2006 .
[44] Farhad Shahrokhi,et al. Sparsest cuts and bottlenecks in graphs , 1990, Discret. Appl. Math..
[45] Doron Puder,et al. Expansion of random graphs: new proofs, new results , 2012, 1212.5216.
[46] J. Friedman,et al. Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.
[47] Ori Parzanchevski,et al. Simplicial complexes: Spectrum, homology and random walks , 2012, Random Struct. Algorithms.
[48] A. Rbnyi. ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .
[49] P. Buser. A note on the isoperimetric constant , 1982 .
[50] J. Dodziuk. Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .
[51] Alexander Lubotzky,et al. Ramanujan complexes of typeÃd , 2005 .
[52] Howard Garland,et al. p-Adic Curvature and the Cohomology of Discrete Subgroups of p-Adic Groups , 1973 .
[53] N. Alon,et al. il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .