Isoperimetric inequalities in simplicial complexes

In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov’s notion of geometric overlap. Using the work of Gundert and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes.

[1]  János Pach A Tverberg-type result on multicolored simplices , 1998, Comput. Geom..

[2]  Alexander Lubotzky,et al.  Discrete groups, expanding graphs and invariant measures , 1994, Progress in mathematics.

[3]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[4]  Art M. Duval,et al.  Simplicial matrix-tree theorems , 2008, 0802.2576.

[5]  Nikhil Srivastava,et al.  Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[6]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[7]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[8]  E. Berger,et al.  Eigenvalues and homology of flag complexes and vector representations of graphs , 2003 .

[9]  B. Eckmann Harmonische Funktionen und Randwertaufgaben in einem Komplex , 1944 .

[10]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..

[11]  Matthew Kahle,et al.  Coboundary expanders , 2010, 1012.5316.

[12]  R. Meshulam,et al.  Homological connectivity of random k-dimensional complexes , 2009, Random Struct. Algorithms.

[13]  Jirí Matousek,et al.  On Gromov’s Method of Selecting Heavily Covered Points , 2011, Discret. Comput. Geom..

[14]  R. Oliveira Concentration of the adjacency matrix and of the Laplacian in random graphs with independent edges , 2009, 0911.0600.

[15]  M. Murty Ramanujan Graphs , 1965 .

[16]  Alexander Lubotzky,et al.  Expander graphs in pure and applied mathematics , 2011, 1105.2389.

[17]  Caroline J. Klivans,et al.  A Cheeger-Type Inequality on Simplicial Complexes , 2012, Adv. Appl. Math..

[18]  Noga Alon,et al.  On the second eigenvalue of a graph , 1991, Discret. Math..

[19]  Nathan Linial,et al.  Lifts, Discrepancy and Nearly Optimal Spectral Gap* , 2006, Comb..

[20]  M. Gromov Singularities, Expanders and Topology of Maps. Part 2: from Combinatorics to Topology Via Algebraic Isoperimetry , 2010 .

[21]  Anna Gundert,et al.  Higher dimensional discrete Cheeger inequalities , 2014, J. Comput. Geom..

[22]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[23]  Oliver Vornberger,et al.  The Complexity of Testing Whether a Graph is a Superconcentrator , 1981, Inf. Process. Lett..

[24]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[25]  Daniel A. Spielman,et al.  Fault diagnosis in a small constant number of parallel testing rounds , 1993, SPAA '93.

[26]  Nathan Linial,et al.  Homological Connectivity Of Random 2-Complexes , 2006, Comb..

[27]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[28]  Victor Reiner,et al.  Combinatorial Laplacians of matroid complexes , 1999 .

[29]  S. Janson On concentration of probability , 2000 .

[30]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..

[31]  Anna Gundert,et al.  On laplacians of random complexes , 2012, SoCG '12.

[32]  A. Zuk,et al.  La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres , 1996 .

[33]  Noga Alon,et al.  Eigenvalues and expanders , 1986, Comb..

[34]  J. Dodziuk Finite-difference approach to the Hodge theory of harmonic forms , 1976 .

[35]  B. Bollobás The evolution of random graphs , 1984 .

[36]  Yuri Rabinovich,et al.  On multiplicative λ-approximations and some geometric applications , 2012, SODA.

[37]  Anna Gundert,et al.  Higher Dimensional Cheeger Inequalities , 2014, SoCG.

[38]  Avi Wigderson,et al.  On the second eigenvalue of hypergraphs , 1995, Comb..

[39]  F. Chung The Laplacian of a Hypergraph. , 1992 .

[40]  N. Wallach,et al.  Homological connectivity of random k-dimensional complexes , 2009 .

[41]  János Pach,et al.  Overlap properties of geometric expanders , 2011, SODA '11.

[42]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[43]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[44]  Farhad Shahrokhi,et al.  Sparsest cuts and bottlenecks in graphs , 1990, Discret. Appl. Math..

[45]  Doron Puder,et al.  Expansion of random graphs: new proofs, new results , 2012, 1212.5216.

[46]  J. Friedman,et al.  Computing Betti Numbers via Combinatorial Laplacians , 1996, STOC '96.

[47]  Ori Parzanchevski,et al.  Simplicial complexes: Spectrum, homology and random walks , 2012, Random Struct. Algorithms.

[48]  A. Rbnyi ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .

[49]  P. Buser A note on the isoperimetric constant , 1982 .

[50]  J. Dodziuk Difference equations, isoperimetric inequality and transience of certain random walks , 1984 .

[51]  Alexander Lubotzky,et al.  Ramanujan complexes of typeÃd , 2005 .

[52]  Howard Garland,et al.  p-Adic Curvature and the Cohomology of Discrete Subgroups of p-Adic Groups , 1973 .

[53]  N. Alon,et al.  il , , lsoperimetric Inequalities for Graphs , and Superconcentrators , 1985 .