Resource-Bounded Modelling and Analysis of Human-Level Interactive Proofs

Mathematics is the lingua franca of modern science, not least because of its conciseness and abstractive power. The ability to prove mathematical theorems is a key prerequisite in many fields of modern science, and the training of how to do proofs therefore plays a major part in the education of students in these subjects. Computer-supported learning is an increasingly important form of study since it allows for independent learning and individualised instruction.

[1]  Christoph Benzmüller,et al.  Judging Granularity for Automated Mathematics Teaching , 2006, ICLP 2006.

[2]  Helmut Horacek,et al.  A Multi-dimensional Taxonomy for Automating Hinting , 2004, Intelligent Tutoring Systems.

[3]  Bor-Yuh Evan Chang,et al.  Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic , 2001 .

[4]  Jörg H. Siekmann,et al.  Natural Language Dialog with a Tutor System for Mathematical Proofs , 2005, Cognitive Systems.

[5]  Ivana Kruijff-Korbayová,et al.  An Annotated Corpus of Tutorial Dialogs on Mathematical Theorem Proving , 2004, LREC.

[6]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[7]  Johanna D. Moore,et al.  A comparative evaluation of socratic versus didactic tutoring , 2001 .

[8]  Livio Robaldo,et al.  Proceedings of the 8th Conference on Language resources and Evaluation , 2012 .

[9]  Dimitra Tsovaltzi,et al.  Human-Adaptive Determination of Natural Language Hints , 2005 .

[10]  Christoph Benzmüller,et al.  Assertion-level Proof Representation with Under-Specification , 2004, Electron. Notes Theor. Comput. Sci..

[11]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[12]  Joris Van der Hoeven GNU TeXmacs, A free, structured, wysiwyg and technical text editor , 2001 .

[13]  Ivana Kruijff-Korbayová,et al.  Towards a principled approach to tutoring mathematical proofs , 2003 .

[14]  Jörg H. Siekmann,et al.  ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System , 2011, Resource-Adaptive Cognitive Processes.

[15]  L. Rips The Psychology of Proof: Deductive Reasoning in Human Thinking , 1994 .

[16]  J. R. Quinlan,et al.  Data Mining Tools See5 and C5.0 , 2004 .

[17]  Marvin R. G. Schiller Mechanizing Proof Step Evaluation for Mathematics Tutoring - The Case of Granularity , 2007 .

[18]  Kurt VanLehn,et al.  Abductive Theorem Proving for Analyzing Student Explanations to Guide Feedback in Intelligent Tutoring Systems , 2004 .

[19]  Wilfried Sieg,et al.  The AProS Project: Strategic Thinking & Computational Logic , 2007, Log. J. IGPL.

[20]  Christoph Benzmüller,et al.  Mathematical Domain Reasoning Tasks in Natural Language Tutorial Dialog on Proofs , 2005, AAAI.

[21]  Dimitra Tsovaltzi,et al.  Domain-Knowledge Manipulation for Dialogue-Adaptive Hinting , 2005, AIED.

[22]  Richard Sommer,et al.  A Proof Environment for Teaching Mathematics , 2004, Journal of Automated Reasoning.

[23]  Frank Pfenning,et al.  ETPS: A System to Help Students Write Formal Proofs , 2004, Journal of Automated Reasoning.

[24]  Christoph Benzmüller,et al.  Granularity Judgments in Proof Tutoring , 2006 .

[25]  J. F. Kelley,et al.  An iterative design methodology for user-friendly natural language office information applications , 1984, TOIS.

[26]  Xiaorong Huang,et al.  Human oriented proof presentation - a reconstructive approach , 1996, DISKI.

[27]  Christoph Benzmüller,et al.  Proof step analysis for proof tutoring - a learning approach to granularity , 2008, Teaching Mathematics and Computer Science.

[28]  Claus Zinn,et al.  Supporting the formal verification of mathematical texts , 2006, J. Appl. Log..

[29]  G. Gentzen Untersuchungen über das logische Schließen. I , 1935 .

[30]  Élisabeth Delozanne,et al.  Linguistic Markers to Improve the Assessment of Students in Mathematics: An Exploratory Study , 2004, Intelligent Tutoring Systems.

[31]  LogicMarcello D'Agostino,et al.  WinKE : A Proof Assistant for Teaching , 1998 .

[33]  Helmut Horacek,et al.  A Tool for Supporting Progressive Refinement of Wizard-of-Oz Experiments in Natural Language , 2004 .

[34]  Ivana Kruijff-Korbayová,et al.  A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material , 2006, LREC.

[35]  Ivana Kruijff-Korbayová,et al.  DiaWOz-II - A Tool for Wizard-of-Oz Experiments in Mathematics , 2006, KI.

[36]  Manfred Pinkal,et al.  Linguistic Processing in a Mathematics Tutoring System: Cooperative Input Interpretation and Dialogue Modelling , 2011, Resource-Adaptive Cognitive Processes.

[37]  金田 重郎,et al.  C4.5: Programs for Machine Learning (書評) , 1995 .

[38]  Kurt VanLehn,et al.  Abductive Theorem Proving for Analyzing Student Explanations to Guide Feedback in Intelligent Tutoring Systems , 2004, Journal of Automated Reasoning.

[39]  Antonis C. Kakas,et al.  The role of abduction in logic programming , 1998 .

[40]  R. Matthews,et al.  Vygotsky's philosophy: Constructivism and its criticisms examined , 2005 .

[41]  P. O. Box,et al.  Human-Adaptive Determination of Natural Language Hints , 2005 .

[42]  Christoph Benzmüller,et al.  A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity , 2005, MKM.

[43]  Jörg H. Siekmann,et al.  ActiveMath: An Intelligent Tutoring System for Mathematics , 2004, ICAISC.

[44]  Christoph Benzmüller,et al.  Deep Inference for Automated Proof Tutoring? , 2007, KI.

[45]  Mark Buckley,et al.  Verification of Proof Steps for Tutoring Mathematical Proofs , 2007, AIED.

[46]  Jörg H. Siekmann,et al.  A Wizard of Oz Experiment for Tutorial Dialogues in Mathematics , 2003 .

[47]  Jörg H. Siekmann,et al.  Tutorial dialogs on mathematical proofs , 2003, IJCAI 2003.

[48]  Peter Robinson,et al.  Student Proof Exercises Using MathsTiles and Isabelle/HOL in an Intelligent Book , 2007, Journal of Automated Reasoning.

[49]  Theo Tryfonas,et al.  Frontiers in Artificial Intelligence and Applications , 2009 .