Resource-Bounded Modelling and Analysis of Human-Level Interactive Proofs
暂无分享,去创建一个
Jörg H. Siekmann | Christoph Benzmüller | Marvin R. G. Schiller | Marvin R. G. Schiller | J. Siekmann | Christoph Benzmüller
[1] Christoph Benzmüller,et al. Judging Granularity for Automated Mathematics Teaching , 2006, ICLP 2006.
[2] Helmut Horacek,et al. A Multi-dimensional Taxonomy for Automating Hinting , 2004, Intelligent Tutoring Systems.
[3] Bor-Yuh Evan Chang,et al. Human-Readable Machine-Verifiable Proofs for Teaching Constructive Logic , 2001 .
[4] Jörg H. Siekmann,et al. Natural Language Dialog with a Tutor System for Mathematical Proofs , 2005, Cognitive Systems.
[5] Ivana Kruijff-Korbayová,et al. An Annotated Corpus of Tutorial Dialogs on Mathematical Theorem Proving , 2004, LREC.
[6] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[7] Johanna D. Moore,et al. A comparative evaluation of socratic versus didactic tutoring , 2001 .
[8] Livio Robaldo,et al. Proceedings of the 8th Conference on Language resources and Evaluation , 2012 .
[9] Dimitra Tsovaltzi,et al. Human-Adaptive Determination of Natural Language Hints , 2005 .
[10] Christoph Benzmüller,et al. Assertion-level Proof Representation with Under-Specification , 2004, Electron. Notes Theor. Comput. Sci..
[11] John C. Platt,et al. Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .
[12] Joris Van der Hoeven. GNU TeXmacs, A free, structured, wysiwyg and technical text editor , 2001 .
[13] Ivana Kruijff-Korbayová,et al. Towards a principled approach to tutoring mathematical proofs , 2003 .
[14] Jörg H. Siekmann,et al. ΩMEGA: Resource-Adaptive Processes in an Automated Reasoning System , 2011, Resource-Adaptive Cognitive Processes.
[15] L. Rips. The Psychology of Proof: Deductive Reasoning in Human Thinking , 1994 .
[16] J. R. Quinlan,et al. Data Mining Tools See5 and C5.0 , 2004 .
[17] Marvin R. G. Schiller. Mechanizing Proof Step Evaluation for Mathematics Tutoring - The Case of Granularity , 2007 .
[18] Kurt VanLehn,et al. Abductive Theorem Proving for Analyzing Student Explanations to Guide Feedback in Intelligent Tutoring Systems , 2004 .
[19] Wilfried Sieg,et al. The AProS Project: Strategic Thinking & Computational Logic , 2007, Log. J. IGPL.
[20] Christoph Benzmüller,et al. Mathematical Domain Reasoning Tasks in Natural Language Tutorial Dialog on Proofs , 2005, AAAI.
[21] Dimitra Tsovaltzi,et al. Domain-Knowledge Manipulation for Dialogue-Adaptive Hinting , 2005, AIED.
[22] Richard Sommer,et al. A Proof Environment for Teaching Mathematics , 2004, Journal of Automated Reasoning.
[23] Frank Pfenning,et al. ETPS: A System to Help Students Write Formal Proofs , 2004, Journal of Automated Reasoning.
[24] Christoph Benzmüller,et al. Granularity Judgments in Proof Tutoring , 2006 .
[25] J. F. Kelley,et al. An iterative design methodology for user-friendly natural language office information applications , 1984, TOIS.
[26] Xiaorong Huang,et al. Human oriented proof presentation - a reconstructive approach , 1996, DISKI.
[27] Christoph Benzmüller,et al. Proof step analysis for proof tutoring - a learning approach to granularity , 2008, Teaching Mathematics and Computer Science.
[28] Claus Zinn,et al. Supporting the formal verification of mathematical texts , 2006, J. Appl. Log..
[29] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[30] Élisabeth Delozanne,et al. Linguistic Markers to Improve the Assessment of Students in Mathematics: An Exploratory Study , 2004, Intelligent Tutoring Systems.
[31] LogicMarcello D'Agostino,et al. WinKE : A Proof Assistant for Teaching , 1998 .
[33] Helmut Horacek,et al. A Tool for Supporting Progressive Refinement of Wizard-of-Oz Experiments in Natural Language , 2004 .
[34] Ivana Kruijff-Korbayová,et al. A corpus of tutorial dialogs on theorem proving; the influence of the presentation of the study-material , 2006, LREC.
[35] Ivana Kruijff-Korbayová,et al. DiaWOz-II - A Tool for Wizard-of-Oz Experiments in Mathematics , 2006, KI.
[36] Manfred Pinkal,et al. Linguistic Processing in a Mathematics Tutoring System: Cooperative Input Interpretation and Dialogue Modelling , 2011, Resource-Adaptive Cognitive Processes.
[37] 金田 重郎,et al. C4.5: Programs for Machine Learning (書評) , 1995 .
[38] Kurt VanLehn,et al. Abductive Theorem Proving for Analyzing Student Explanations to Guide Feedback in Intelligent Tutoring Systems , 2004, Journal of Automated Reasoning.
[39] Antonis C. Kakas,et al. The role of abduction in logic programming , 1998 .
[40] R. Matthews,et al. Vygotsky's philosophy: Constructivism and its criticisms examined , 2005 .
[41] P. O. Box,et al. Human-Adaptive Determination of Natural Language Hints , 2005 .
[42] Christoph Benzmüller,et al. A Generic Modular Data Structure for Proof Attempts Alternating on Ideas and Granularity , 2005, MKM.
[43] Jörg H. Siekmann,et al. ActiveMath: An Intelligent Tutoring System for Mathematics , 2004, ICAISC.
[44] Christoph Benzmüller,et al. Deep Inference for Automated Proof Tutoring? , 2007, KI.
[45] Mark Buckley,et al. Verification of Proof Steps for Tutoring Mathematical Proofs , 2007, AIED.
[46] Jörg H. Siekmann,et al. A Wizard of Oz Experiment for Tutorial Dialogues in Mathematics , 2003 .
[47] Jörg H. Siekmann,et al. Tutorial dialogs on mathematical proofs , 2003, IJCAI 2003.
[48] Peter Robinson,et al. Student Proof Exercises Using MathsTiles and Isabelle/HOL in an Intelligent Book , 2007, Journal of Automated Reasoning.
[49] Theo Tryfonas,et al. Frontiers in Artificial Intelligence and Applications , 2009 .