End-to-End Negation Resolution as Graph Parsing

We present a neural end-to-end architecture for negation resolution based on a formulation of the task as a graph parsing problem. Our approach allows for the straightforward inclusion of many type ...

[1]  Bonnie L. Webber,et al.  Neural Networks For Negation Scope Detection , 2016, ACL.

[2]  W. Nelson Francis,et al.  FREQUENCY ANALYSIS OF ENGLISH USAGE: LEXICON AND GRAMMAR , 1983 .

[3]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[4]  Erik Velldal,et al.  UiO 2: Sequence-labeling Negation Using Dependency Features , 2012, *SEMEVAL.

[5]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[6]  François Yvon,et al.  Practical Very Large Scale CRFs , 2010, ACL.

[7]  Zoubin Ghahramani,et al.  A Theoretically Grounded Application of Dropout in Recurrent Neural Networks , 2015, NIPS.

[8]  Richard Socher,et al.  Regularizing and Optimizing LSTM Language Models , 2017, ICLR.

[9]  Diego Marcheggiani,et al.  Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling , 2017, EMNLP.

[10]  Martin Potthast,et al.  CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies , 2018, CoNLL.

[11]  Dan Klein,et al.  An Empirical Investigation of Statistical Significance in NLP , 2012, EMNLP.

[12]  Rotem Dror,et al.  Replicability Analysis for Natural Language Processing: Testing Significance with Multiple Datasets , 2017, TACL.

[13]  Stephan Oepen,et al.  Speculation and Negation: Rules, Rankers, and the Role of Syntax , 2012, CL.

[14]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[15]  Emily M. Bender,et al.  Simple Negation Scope Resolution through Deep Parsing: A Semantic Solution to a Semantic Problem , 2014, ACL.

[16]  Timothy Dozat,et al.  Simpler but More Accurate Semantic Dependency Parsing , 2018, ACL.

[17]  Roser Morante,et al.  ConanDoyle-neg: Annotation of negation cues and their scope in Conan Doyle stories , 2012, LREC.

[18]  Suraj Sawant,et al.  NegBERT: A Transfer Learning Approach for Negation Detection and Scope Resolution , 2019, LREC.

[19]  Bonnie L. Webber,et al.  NegPar: A parallel corpus annotated for negation , 2018, LREC.

[20]  Jari Björne,et al.  The 2017 Shared Task on Extrinsic Parser Evaluation Towards a Reusable Community Infrastructure , .

[21]  Timothy Dozat,et al.  Stanford’s Graph-based Neural Dependency Parser at the CoNLL 2017 Shared Task , 2017, CoNLL.

[22]  Marco Kuhlmann,et al.  Improving Semantic Dependency Parsing with Syntactic Features , 2019 .

[23]  Jun'ichi Tsujii,et al.  Syntax Annotation for the GENIA Corpus , 2005, IJCNLP.

[24]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[25]  Eliyahu Kiperwasser,et al.  Simple and Accurate Dependency Parsing Using Bidirectional LSTM Feature Representations , 2016, TACL.

[26]  Yann LeCun,et al.  Regularization of Neural Networks using DropConnect , 2013, ICML.

[27]  Stephan Oepen,et al.  UiO1: Constituent-Based Discriminative Ranking for Negation Resolution , 2012, *SEMEVAL.

[28]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[29]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[30]  János Csirik,et al.  The BioScope corpus: annotation for negation, uncertainty and their scope in biomedical texts , 2008, BioNLP.

[31]  Benoît Sagot,et al.  Paris and Stanford at EPE 2017: Downstream Evaluation of Graph-based Dependency Representations , 2017 .

[32]  James Pustejovsky,et al.  Proceedings of the Tenth International Workshop on Health Text Mining and Information Analysis (LOUHI 2019) , 2019 .

[33]  Peter Szolovits,et al.  Neural Token Representations and Negation and Speculation Scope Detection in Biomedical and General Domain Text , 2019, EMNLP.

[34]  Sigrid Klerke,et al.  Down-stream effects of tree-to-dependency conversions , 2013, HLT-NAACL.

[35]  Rotem Dror,et al.  The Hitchhiker’s Guide to Testing Statistical Significance in Natural Language Processing , 2018, ACL.

[36]  Tapio Salakoski,et al.  Turku Neural Parser Pipeline: An End-to-End System for the CoNLL 2018 Shared Task , 2018, CoNLL.

[37]  Paul Rayson,et al.  FIESTA: Fast IdEntification of State-of-The-Art models using adaptive bandit algorithms , 2019, ACL.

[38]  Roser Morante,et al.  *SEM 2012 Shared Task: Resolving the Scope and Focus of Negation , 2012, *SEMEVAL.

[39]  Jari Björne,et al.  The 2018 Shared Task on Extrinsic Parser Evaluation: On the Downstream Utility of English Universal Dependency Parsers , 2018, CoNLL Shared Task.

[40]  Luis Alfonso Ureña López,et al.  Corpora Annotated with Negation: An Overview , 2020, CL.

[41]  Kyle Gorman,et al.  We Need to Talk about Standard Splits , 2019, ACL.

[42]  Bonnie L. Webber,et al.  Neural Networks for Cross-lingual Negation Scope Detection , 2018, ArXiv.

[43]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.