Iterative parameter estimation for extraction of crystallization kinetics of potassium chloride from batch experiments

Extraction of crystallization kinetics, the fundamental information which governs the performance of a crystallization process, is characterized by experimental difficulties in MSMPR and mathematical difficulties in batch crystallization. Here, a rigorous approach is taken to estimate kinetic parameters from a batch crystallizer. The two step LaxWendorff technique is adapted for the solution of the population balance in a batch crystallizer and an iterative self-correcting least squares algorithm is implemented for the estimation of the kinetic parameters. The need for multi-response estimation as opposed to single-response from terminal CSD is demonstrated. The kinetics extracted are average ones, representing primary and secondary nucleation kinetics. It is found that the kinetic parameters estimated by multi-response technique have a superior predictive capability as opposed to those obtained using the terminal CSD only. An advantage of the proposed algorithm is that the measurement of course of supersaturation, which is difficult to perform, is not required. Ľextraction de la cinetique de cristallisation, information fondamentale qui gouverne la performance du procede de cristallisation, se caracterise par des difficultes experimentales dans le MSMPR et des difficultes mathematiques dans la cristallisation discontinue. On a adopte une approche rigoureuse pour ľestimation des parametres cinetiques avec le cristalliseur discontinu. La methode en deux etapes de LaxWendorff a ete adaptee pour la solution du bilan de population dans un cristalliseur discontinu, et un algorithme de moindres carres auto-correctif iteratif est introduit pour ľestimation des parametres cinetiques. On demontre le besoin ďune estimation a reponses multiples plutǒt q'a reponse unique avec le CSD terminal. Les cinetiques extraites sont moyennes et representent des cinetiques de nucleation primaires et secondaires. Les parametres cinetiques estimes par la technique a reponses multiples montrent une capacite de prediction superieure par rapport aux parametres obtenus avec le CSD terminal uniquement. Ľalgorithme propose a un avantage, a savoir que la mesure de l'evolution vers la sursaturation, qui est difficile a realiser, n'est pas necessaire.

[1]  J. Wey ANALYSIS OF BATCH CRYSTALLIZATION PROCESSES , 1985 .

[2]  René David,et al.  Crystallization and precipitation engineering—II. A chemical reaction engineering approach to salicyclic acid precipitation: Modelling of batch kinetics and application to continuous operation , 1988 .

[3]  Hwang Chyi,et al.  Solution of population balance equations via block pulse functions , 1982 .

[4]  Jaroslav Nývlt,et al.  Programmed cooling of batch crystallizers , 1988 .

[5]  Åke C. Rasmuson,et al.  Nucleation and growth of succinic acid in a batch cooling crystallizer , 1991 .

[6]  J. W. Mullin,et al.  Programmed cooling crystallization of potassium sulphate solutions , 1974 .

[7]  The effect of the mode of cooling on size distribution of crystals produced in batch crystallizer , 1974 .

[8]  D. G. Fisher,et al.  Parameter estimation using linear programming and quasilinearization , 1972 .

[9]  Sohrab Rohani,et al.  A simplified approach to the operation of a batch crystallizer , 1990 .

[10]  J. Seinfeld,et al.  Numerical solution of the dynamic equation for particulate systems , 1978 .

[11]  Zhi-Keng Wang,et al.  Supersaturation and crystallization kinetics of potassium chloride , 1989 .

[13]  R. Kalaba,et al.  Optimizing inputs for diagnosis of diabetes. I. Fitting a minimal model to data , 1976 .

[14]  S. Rohani,et al.  Batch crystallization of KCl in the presence of soluble and insoluble impurities , 1992 .

[15]  J. Garside,et al.  Evaluation of crystal growth kinetics from a desupersaturation curve using initial derivatives , 1982 .

[16]  Alan D. Randolph,et al.  On-line measurement of fine-crystal response to crystallizer disturbances , 1981 .

[17]  J. Seinfeld,et al.  A new algorithm for the estimation of parameters in ordinary differential equations , 1972 .

[18]  J. Garside,et al.  Simultaneous estimation of crystal nucleation and growth kinetics from batch experiments , 1986 .

[19]  J. Nývlt CALCULATION OF THE KINETICS OF CRYSTALLIZATION BASED ON A SINGLE BATCH EXPERIMENT , 1989 .

[20]  George R. Gavalas,et al.  Analysis of kinetic parameters from batch and integral reaction experiments , 1970 .

[21]  S. Rohani,et al.  Determination of potash crystallization kinetics in a laboratory‐scale continuous cooling crystallizer , 1989 .

[22]  Ru-Ying Qian,et al.  Crystallization kinetics of potassium chloride from brine and scale‐up criterion , 1987 .